首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1725篇
  免费   159篇
  国内免费   249篇
化学   1434篇
晶体学   106篇
力学   108篇
综合类   26篇
数学   3篇
物理学   456篇
  2024年   3篇
  2023年   12篇
  2022年   49篇
  2021年   41篇
  2020年   41篇
  2019年   55篇
  2018年   57篇
  2017年   72篇
  2016年   72篇
  2015年   45篇
  2014年   69篇
  2013年   103篇
  2012年   99篇
  2011年   91篇
  2010年   89篇
  2009年   97篇
  2008年   113篇
  2007年   116篇
  2006年   107篇
  2005年   99篇
  2004年   111篇
  2003年   90篇
  2002年   103篇
  2001年   59篇
  2000年   47篇
  1999年   50篇
  1998年   48篇
  1997年   37篇
  1996年   38篇
  1995年   19篇
  1994年   22篇
  1993年   16篇
  1992年   15篇
  1991年   10篇
  1990年   10篇
  1989年   5篇
  1988年   10篇
  1987年   3篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1978年   2篇
排序方式: 共有2133条查询结果,搜索用时 171 毫秒
271.
Cellulose/Tamarind nut powder (TNP)/Silver nanoparticles (AgNPs) nanocomposites were prepared by in situ generation of AgNPs using regeneration method, followed by solution casting method. In this, TNP was used as a reducing agent. These nanocomposites were characterized using FT-IR spectroscopy, XRD and SEM and studied their mechanical properties and antibacterial activity for medical and packing applications. The FT-IR spectral studies revealed the involvement of functional groups – Polyphenols, Flavonoids and –OH in the process of reducing the metal salts into metal nanoparticles. These nanocomposites showed good antibacterial activity against five bacteria. Improved mechanical properties with good antibacterial activities make these composites suitable for medical, food and packaging applications.  相似文献   
272.
Using aqueous extraction of red sanders powder as a reducing agent, silver and copper bimetallic nanoparticles were in situ generated in cotton fabrics. Silver and copper nanoparticles were also generated separately for comparison. The resulted nanocomposite cotton fabrics (NCFs) were characterized by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and antibacterial tests. SEM analysis indicated the generation of more number of nanoparticles when bimetallic source solutions were used. Further, the size range of the generated bimetallic nanoparticles was found to be lower than when individual metal nanoparticles were generated in NCFs. XRD analysis confirmed the in situ generation of silver and copper nanoparticles when equimolar bimetallic salt source solutions were utilized. The NCFs with bimetallic nanoparticles exhibited higher antibacterial activity against both Gram-negative and Gram-positive bacteria and hence can be considered for applications as antibacterial bed and dressing materials.  相似文献   
273.
In this work, properties of a magnetorheological (MR) fluid, prepared by dispersing a mixture of two types of carbonyl iron powders (CIPs) of different sizes, in an ionic liquid (N,N-diethyl-N-methyl-N-(2-methoxyethyl) ammonium tetrafluoroborate) that is stable from 9 °C to ca. 300 °C, have been investigated. At first, the random packing density of the mixture was computed as function of mixing ratio of CIP, in order to find out the tendency of the variation. Next, several mixtures, all having the same weight, were prepared at various mixing ratios and dispersed in the ionic liquid, in order to experimentally find the most suitable mixing ratio of CIP. Then, the magnetic clusters of the synthesized MR fluids were observed by using a digital microscope equipped with two permanent magnets, whereas the MR properties were investigated by using a rotation viscometer equipped with a solenoid coil. The experimental results pointed out that the MR fluid with 60 wt% fraction of large particles exhibited the highest MR response.  相似文献   
274.
Ferromagnetic powders which are surrounded by an electrically insulating film (soft magnetic composites (SMCs)) exhibit unique magnetic properties, such as relatively low magnetic losses and 3D isotropic magnetic behavior. In some electromagnetic applications, including microwave frequency range applications, it is necessary to increase electrical resistivity without any noticeable reduction in magnetic properties. To achieve this purpose, electrically resistant materials, for example, ferrites with acceptable magnetic properties, are suitable candidates. This paper focuses on the effects of the synthesized Ni–Zn ferrite addition on the magnetic properties of the SMCs containing Ni–Zn ferrite within iron particles. The structure was studied by means of X-ray diffraction (XRD). The microstructure and the powder morphology were examined by the use of scanning electron microscopy (SEM). The magnetic measurements on powders and samples were carried out using a vibrating sample magnetometer (VSM) and an LCR meter, respectively. The results indicate that the lowest magnetic loss and the highest magnetic permeability are related to the composites with 20 wt% ferrite and 2 wt% ferrite, respectively. Also, the composites with 10 wt% ferrite show a good combination of magnetic loss and magnetic permeability in the range 0–500 kHz.  相似文献   
275.
276.
Recent research has focused on increasing the evidentiary value of latent fingerprints through chemical analysis. Although researchers have optimized the use of organic and metal matrices for matrix‐assisted laser desorption/ionization‐mass spectrometry imaging (MALDI‐MSI) of latent fingerprints, the use of development powders as matrices has not been fully investigated. Carbon forensic powder (CFP), a common nonporous development technique, was shown to be an efficient one‐step matrix; however, a high‐resolution mass spectrometer was required in the low mass range due to carbon clusters. Titanium oxide (TiO2) is another commonly used development powder, especially for dark nonporous surfaces. Here, forensic TiO2 powder is utilized as a single‐step development and matrix technique for chemical imaging of latent fingerprints without the requirement of a high‐resolution mass spectrometer. All studied compounds were successfully detected when TiO2 was used as the matrix in positive mode, although, generally, the overall ion signals were lower than the previously studied CFP. TiO2 provided quality mass spectrometry (MS) images of endogenous and exogenous latent fingerprint compounds. The subsequent addition of traditional matrices on top of the TiO2 powder was ineffective for universal detection of latent fingerprint compounds. Forensic TiO2 development powder works as an efficient single‐step development and matrix technique for MALDI‐MSI analysis of latent fingerprints in positive mode and does not require a high‐resolution mass spectrometer for analysis.  相似文献   
277.
利用电感耦合等离子发射光谱法(ICP-OES)测定铁基粉末冶金中的钙元素.通过调整酸度配比和消除干扰因素,采用外标法定量消除基体效应的影响,同时共存元素的干扰校正试验表明,样品中共存元素对待测元素无干扰影响.通过对样品消解进行前处理优化,结果表明:在样品中加入王水后在电热板上加热,消解后滴加双氧水,使用ICP-OES测定,能获得良好的定量结果.在0.5~10 mg/L范围内具有较好的线性关系,其线性相关系数为0.999 9,方法精密度的RSD为0.14%(n=10),加标回收率为98%~105%.方法具有经济、快速、简单且重现性好等特点,可以满足日常分析检测要求.  相似文献   
278.
New members of the AnBn−1O3n perovskite-like family (Ba5KNb5O18 and Sr6Nb4SnO18 compounds) with n = 6 have been synthesized and studied by the X-ray powder diffraction. Their crystal structures were found to belong to the Ba6Nb4TiO18-type with a = 0.57840(7) nm, c = 4.2532(5) nm and a = 0.5661(1) nm, c = 4.186(1) nm for Ba5KNb5O18 and Sr6Nb4SnO18, respectively. It was shown that Ba and K (A-atoms) are completely disordered in the crystal structure of Ba5KNb5O18 compound. But Nb and Sn atoms (B-atoms) in the crystal structure of the Sr6Nb4SnO18 compound are quite ordered with the preferred Sn+4 and Nb5+ cations localization in the center of perovskite-like block and on the boundaries of these blocks, respectively. Temperature and frequency dependencies of the real components of electric conductivity σI and dielectric permeability ɛI; specific electric conductivity at the direct current σdc have been obtained by the impedance spectroscopy method for Sr6Nb4SnO18.  相似文献   
279.
To optimize the cycle life and rate performance of lithium-ion batteries (LIBs), ultra-fine Fe2O3 nanowires with a diameter of approximately 2 nm uniformly anchored on a cross-linked graphene ribbon network are fabricated. The unique three-dimensional structure can effectively improve the electrical conductivity and facilitate ion diffusion, especially cross-plane diffusion. Moreover, Fe2O3 nanowires on graphene ribbons (Fe2O3/GR) are easily accessible for lithium ions compared with the traditional graphene sheets (Fe2O3/GS). In addition, the well-developed elastic network can not only undergo the drastic volume expansion during repetitive cycling, but also protect the bulk electrode from further pulverization. As a result, the Fe2O3/GR hybrid exhibits high rate and long cycle life Li storage performance (632 mAh g−1 at 5 A g−1, and 471 mAh g−1 capacity maintained even after 3000 cycles). Especially at high mass loading (≈4 mg cm−2), the Fe2O3/GR can still deliver higher reversible capacity (223 mAh g−1 even at 2 A g−1) compared with the Fe2O3/GS (37 mAh g−1) for LIBs.  相似文献   
280.
A series of 4-alkoxybenzoic acids 1[m,n] and their methyl esters 2[m,n] containing a partially fluorinated alkyl chain was prepared and their physical properties were investigated by optical, thermal and powder X-ray diffraction (XRD) methods. The former exhibits an SmC phase, while the latter form an SmA phase. XRD analysis indicated liquid-like character of the linking alkyl chains, and showed a decreasing layer thermal expansion coefficient from positive to negative upon increasing the degree of fluorination. The new esters 2[m,n] expanded the series and permitted analysis of trends in thermal stability of the SmA phase. The results demonstrate that the SmA–I transition temperature increases by about +20 K per CF2CF2 unit, and is destabilised by –5.6 K upon extending the hydrocarbon part by each CH2CH2 group. Data for the expanded series 2[m,n] were used for comparative analysis of mesogenic behaviour in two other series of derivatives of 1[m,n]. Synthetic methods for 1[m,n] and 2[m,n] are reviewed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号