首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   596篇
  免费   48篇
  国内免费   270篇
化学   829篇
晶体学   11篇
综合类   7篇
数学   2篇
物理学   65篇
  2024年   7篇
  2023年   13篇
  2022年   21篇
  2021年   23篇
  2020年   34篇
  2019年   18篇
  2018年   16篇
  2017年   25篇
  2016年   25篇
  2015年   22篇
  2014年   33篇
  2013年   76篇
  2012年   44篇
  2011年   30篇
  2010年   15篇
  2009年   26篇
  2008年   27篇
  2007年   45篇
  2006年   38篇
  2005年   22篇
  2004年   44篇
  2003年   42篇
  2002年   44篇
  2001年   21篇
  2000年   22篇
  1999年   26篇
  1998年   18篇
  1997年   11篇
  1996年   16篇
  1995年   16篇
  1994年   10篇
  1993年   7篇
  1992年   17篇
  1991年   12篇
  1990年   11篇
  1989年   9篇
  1988年   3篇
  1987年   5篇
  1986年   5篇
  1985年   4篇
  1984年   4篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1975年   2篇
  1974年   2篇
排序方式: 共有914条查询结果,搜索用时 15 毫秒
1.
Liquid-phase condensation of 3-, 4-, and 8-aminoquinolines with aliphatic and aromatic aldehydes catalyzed by transition and rare-earth metal complexes is an efficient method for synthesis of substituted 1,7- and 1,6-naphthyridines and 1,10-phenanthrolines.Institute of Organic Chemistry, Ural Branch, Russian Academy of Sciences, 450054 Ufa; Eastern Scientific-Research Institute of Coal Chemistry, 620219 Sverdlovsk. Translated from Izvestiya Akademii Nauk, Seriya Khimicheskaya, No. 5, pp. 1139–1148, May, 1992.  相似文献   
2.
对于稀土离子掺杂的上转换发光,由于稀土离子吸收截面小、吸收范围窄,导致其发光强度受限.最近,在稀土上转换纳米粒子的表面连接近红外染料分子敏化发光,被证实是提高上转换发光强度的有效策略.然而,将染料分子连接经典的稀土Yb掺杂纳米粒子,并不能有效利用染料分子的敏化能力.针对这一问题,本文通过高温热分解法成功制备了Nd3+敏...  相似文献   
3.
可调谐发光颜色的上转换荧光纳米粒子具有广阔的应用前景。本文设计并成功合成了结构紧凑的多层核-壳纳米颗粒。在不同波段激光的泵浦下,该颗粒中不同壳层分别产生红、绿、蓝3种颜色的上转换荧光。光谱测试结果表明,样品三基色发光的颜色纯度较好,并且可以实现全色域的颜色实时调节。此外,还测试了样品发光强度与泵浦功率之间的依赖关系,用于研究其中的上转换发光机理。这种在单颗粒水平上具有全色域可调发光的紧凑核-壳结构纳米晶体在多通道生物检测及成像、超高分辨率显示器件、高端防伪应用等领域显示出巨大的潜力。  相似文献   
4.
Calcium lanthanide oxyborate doped with rare-earth ions LnCa4O(BO3)3:RE3+ (LnCOB:RE, Ln=Y, La, Gd, RE=Eu, Tb, Dy, Ce) was synthesized by the method of solid-state reaction at high temperature. Their fluorescent spectra were measured from vacuum ultraviolet (VUV) to visible region at room temperature. Their excitation spectra all have a broadband center at about 188 nm, which is ascribed to host absorption. Using Dorenbos’ and Jφrgensen's work [P. Dorenbos, J. Lumin. 91 (2000) 91, R. Resfeld, C.K. Jφrgensen, Lasers and Excite States of Rare Earth [M], Springer, Berlin, 1977, p. 45], the position of the lowest 5d levels E(Ln,A) and charge transfer band Ect were calculated and compared with their excitation spectra.Eu3+ and Tb3+ ions doped into LnCOB show efficient luminescence under VUV and UV irradiation. In this system, Ce3+ ions do not show efficient luminescence and quench the luminescence of Tb3+ ions when Tb3+ and Ce3+ ions are co-doped into LnCOB. GdCOB doped with Dy3+ shows yellowish white light under irradiation of 254 nm light for the reason that Gd3+ ions transfer the energy from itself to Dy3+. Because of the existence of Gd3+, the samples of GdCOB:RE3+ show higher excitation efficiency than LaCOB:RE3+ and YCOB:RE3+, around 188 nm, which indicates that the Gd3+ ions have an effect on the host absorption and can transfer the excitation energy to the luminescent center such as Tb3+, Dy3+ and Eu3+.  相似文献   
5.
Laser-induced fluorescence from frog skeletal muscle fibers treated with lanthanides, Eu3+ and Tb3+, was recorded. The fluorescence was weak and overlapped with the Raman scattering by the Ringer solution when the muscle fibers were illuminated with an argon-ion laser. The fluorescence decay rate of the lanthanide in Ringer's solution was 2–3 times larger than that of the lanthanide bound to the muscle fiber. The number of water molecules coordinated to the lanthanide bound to the muscle fiber was determined to be about three. This suggests that lanthanide ions bind superficially to the outer membrane of the muscle fiber.  相似文献   
6.
Five novel lanthanide (Eu3+, Tb3+, Gd3+, Sm3+ and Dy3+) complexes with 2, 2'-bipyridine-N, N'-dioxide (bipyO2) were synthesized and characterized by elemental analysis, IR spectrum. The triplet state energy of bipy O2 was determined to be 22275 cm(-1) with the phosphorescence spectrum of bipy O2 and its gadolinium complex. The photophysical properties of these complexes indicated that the triplet state energy of the ligand is suitable for the sensitization of the luminescence of Eu3+, Tb3+, Sm3+ and Dy3+, especially of Tb3+.  相似文献   
7.
合成并通过单晶衍射表征了3个稀土配合物Ln(L)(NO3)3(H2O)(L=N-苯基-2-(5-氯-8-喹啉氧基)乙酰胺,Ln=Eu(1),Gd(2),Er(3)),结构与拥有相同有机配体的Pr,Nd和Sm配合物同构。在每个配合物中,十配位的稀土离子采取扭曲的双帽四方反棱柱配位构型,分别与来自1个配体L的2个氧原子和1个氮原子,3个双齿配位硝酸根和1个水分子配位。配合物1能够发射Eu(Ⅲ)离子特征荧光,荧光寿命为437 μs。  相似文献   
8.
Intense green‐emitting Li(Gd,Y)F4:Yb,Er/LiGdF4 core/shell (C/S) upconversion nanophosphors (UCNPs) with a tetragonal bipyramidal morphology are synthesized. The morphology and UC luminescence of the Li(Gd,Y)F4:Yb,Er UCNPs are significantly affected by the Li precursors, and bright UC green‐emitting Li(Gd,Y)F4:Yb,Er UCNPs with a tetragonal bipyramidal shape, i.e., UC tetragonal bipyramids (UCTBs), are synthesized using LiOH·H2O as a Li precursor. A LiGdF4 shell is grown on the Li(Gd,Y)F4:Yb,Er UCTBs, and the C/S UCNPs exhibit 4.7 times higher luminescence intensity than core UCTBs. The C/S UCNPs show a high absolute UC quantum yield of 4.6% under excitation with 980 nm near infrared (NIR) light, and the UC luminescence from the C/S UCNPs is stable under continuous irradiation with the 980 nm NIR laser for 1 h. The hydrophobic surfaces of the as‐synthesized C/S UCNPs are modified to hydrophilic surfaces by using poly(acrylic acid) (PAA) for bioimaging applications. They are applied to human cervical adenocarcinoma (HeLa) cell imaging and SK‐MEL‐2 melanoma cell imaging and in vivo imaging, including subcutaneous and intramuscular imaging, and UC luminescence images with high signal‐to‐noise ratio are obtained. Furthermore, sentinel‐lymph‐node imaging is successfully conducted with the PAA‐capped Li(Gd,Y)F4:Yb,Er/LiGdF4 C/S UCNPs under illumination with NIR light.  相似文献   
9.
Three series of porphyrin liquid crystalline compounds, [5‐(p‐alkoxy)phenyl‐10, 15, 20‐tri‐phenyl] porphyrin and their rare earth complexes (Tb (III), Dy (III), Er (III), Yb (III)), with a hexagonal columnar discotic columnar(Colh) phase have been synthesized. These compounds were characterized by elemental analysis, molar conductances, UV‐visible spectra, infrared spectra, luminescence spectra, and cyclic voltammetry. These compounds exhibit more than one mesophases, which transition points of temperature change from ?33.6 to 16.0 °C, and transition points of temperature for isotropic liquid also increase from 4.9 to 38.2 °C, with increasing chain length. Their surface photovoltage (SPV) response have also been investigated by the means of surface photovoltage spectroscopy (SPS) and field‐induced surface photovoltage spectroscopy (EFISPS). It was found that their SPV bands are analogous with the UV‐visible absorption spectra and derived from the same transition. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
10.
A series of lanthanide complexes with the 3,4,5-trimethoxybenzoic acid(3,4,5-tmoba) and 1,10-phenanthroline(phen),[Ln(3,4,5-tmoba) 3 phen] 2(Ln = Pr(1),Nd(2) and Ho(3)),have been synthesized and characterized by a series of techniques including elemental analysis,IR spectra,X-ray crystallography and TG/DSC-FTIR technology.The three complexes have two kinds of coordination modes,in which the Pr 3+ and Nd 3+ cations are nine-coordinated and the Ho 3+ cation is eight-coordinated.The three-dimensional IR accumulation spectra of gaseous products for complexes 1-3 were analyzed and the gaseous products were identified by the typical IR spectra obtained from the 3D surface graphs.Meanwhile,we obtained the activation energy E of the first steps of complexes 1-3 by the integral isoconversional non-linear(NL-INT) method and discussed the non-isothermal kinetics of complexes 1-3 using the Malek method.Finally,SB(m,n) was defined as the kinetic method of the first-step thermal decomposition.The thermodynamic parameters △G≠,△H≠ and △S≠ of activation at the peak temperature were also calculated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号