首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   821篇
  免费   184篇
  国内免费   106篇
化学   689篇
晶体学   10篇
力学   24篇
综合类   9篇
数学   3篇
物理学   376篇
  2024年   3篇
  2023年   25篇
  2022年   42篇
  2021年   34篇
  2020年   61篇
  2019年   31篇
  2018年   35篇
  2017年   54篇
  2016年   72篇
  2015年   47篇
  2014年   58篇
  2013年   86篇
  2012年   78篇
  2011年   91篇
  2010年   64篇
  2009年   60篇
  2008年   48篇
  2007年   28篇
  2006年   45篇
  2005年   36篇
  2004年   29篇
  2003年   16篇
  2002年   11篇
  2001年   14篇
  2000年   6篇
  1999年   10篇
  1998年   3篇
  1997年   8篇
  1996年   1篇
  1995年   3篇
  1994年   1篇
  1992年   1篇
  1991年   2篇
  1990年   3篇
  1988年   1篇
  1985年   2篇
  1984年   1篇
  1982年   1篇
排序方式: 共有1111条查询结果,搜索用时 15 毫秒
71.
李从举  黄丽  肖斌  冯苹 《化学学报》2010,68(6):571-575
首先合成了纳米磷酸钙(NCP),用扫描电镜(SEM)和X射线衍射(XRD)进行了表征.再利用静电纺丝法制备了PLA/NCP复合纳米纤维,对纤维进行了TEM,SEM,XRD以及单轴拉力测试的表征.TEM和XRD测试表明,NCP已成功掺杂到聚乳酸纤维中,获得的纤维为复合纤维.SEM测试表明,NCP在溶液中浓度较小时,复合纳米纤维的形貌变化不大;NCP浓度超过PLA质量的7%后,纤维表面出现粒状物;随着浓度继续增大,粒状物逐渐增多,最后很难成纤.拉伸实验结果表明,复合纤维拉伸强度先随着NCP浓度的增加而增大,但NCP浓度超过7%后拉伸强度随着浓度的增加反而减小.  相似文献   
72.
Ceria (CeO(2) ) hollow fibers with Pt nanoparticles (Pt?NPs) embedded in their inner surfaces were prepared by sequentially depositing Pt?NPs and CeO(2) sheaths on electrospun fibers of polystyrene, followed by calcination in air at 400?°C. Despite a relatively low Pt loading in this system, the turnover frequency for CO oxidation was 2-3 orders of magnitude higher than those of other systems, and the reactivity was also stable up to 700?°C.  相似文献   
73.
Novel, porous NiCo2O4 nanotubes (NCO‐NTs) are prepared by a single‐spinneret electrospinning technique followed by calcination in air. The obtained NCO‐NTs display a one‐dimensional architecture with a porous structure and hollow interiors. The effect of precursor concentration on the morphologies of the products is investigated. Due to their unique structure, the prepared NCO‐NT electrode exhibits a high specific capacitance (1647 F g?1 at 1 A g?1), excellent rate capability (77.3 % capacity retention at 25 A g?1), and outstanding cycling stability (6.4 % loss after 3000 cycles), which indicates it has great potential for high‐performance electrochemical capacitors. The desirable enhanced capacitive performance of NCO‐NTs can be attributed to the relatively large specific surface area of these porous and hollow one‐dimensional nanostructures.  相似文献   
74.
75.
Using a coaxial capillary spinneret electrospinning technique combined with the sol-gel method, the nickelic xerogel hollow nanofibers first were prepared and the polycrystalline LiNiO2 hollow nanofibers were obtained after sintering. The obtained hollow nanofibers were about 500 nm to 4 µm in outer diameter, and were made up of 20 ~ 30 nm nanocrystals. The xerogel hollow nanofibers and those calcined at different temperatures were characterized by thermogravimetric (TG) analysis, Fourier transform infrared (FTIR) spectrum, x-ray diffractometry (XRD), transmission electron microscopy (TEM), and scanning electron microscopy (SEM).  相似文献   
76.
Coelectrospun polylactide(PLA)/gelatin (GE) composite fibrous matrixes have been identified to exhibit much improved performances compared to the respective components; however, the reasons for their water contact angles decreasing to zero at proper PLA/GE ratios remain unclear. To get a deep understanding of the phenomenon, PLA and GE were coelectrospun with different PLA/GE ratios in this study. Although the resulting composite fibers were homogeneous in appearance, they were detected different microscopic structures by transmission electron mircroscope (TEM) and via morphological observations after selective removal of either PLA or GE component. Together with the results of degradation study in phosphate buffered solution, a kind of cocontinuous phase separation microstructure could be identified for the PLA(50 wt%)/GE(50 wt%) composite fibers, which also showed the water contact angle of 0°. This value was far lower than those of electrospun PLA (~123°) and GE (~42°) fibrous matrixes. The X‐ray photoelectron spectrometry (XPS) data revealed that the polar side groups of protein macromolecules have moved toward composite fiber surface with solvent evaporation during electrospinning, due to the hydrophobic interaction between PLA and GE. Then the excellent hydrophilicity of PLA(50 wt%)/GE(50 wt%) composite fibers could be suggested as the consequence of: (1) the cocontinuous phase separation structure could provide more interface and void for water molecules penetrating; and (2) the accumulation of polar groups on composite fiber surface significantly increased the surface wettability. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
77.
We describe the development of a coarse‐grained (CG) force field for nylon‐6 (polycaprolactam) and its application to the simulation of the structure and macromolecular dynamics within cylindrical fibres formed by this polymer, having diameters in the 14–28 nm range. Our CG model is based on the MARTINI force field for the non‐bonded interactions and on Boltzmann‐inverted gas‐phase atomistic simulations for intramolecular stretching and bending energies. The simulations are carried out on infinite, isolated nanofibres at temperatures of 300, 400 and 500 K, with different starting configurations. Starting from ordered chain‐extended configurations, we simulate the melting of the polymer in the nanofibres and, after cooling back to room temperature, its re‐crystallization in a chain‐folded lamellar configuration. This agrees with experimental observations on electrospun nylon‐6 nanofibres and demonstrated the suitability of the approach for the simulation of these systems. The effect of nanoscale confinement on the structure and dynamics of the polymer chains is extensively discussed.

  相似文献   

78.
We have fabricated novel nanofibrous fluorinated polyimide membranes on a specially designed collector, which is composed of conductive aluminum plates and glass insulator materials and can be removed from the apparatus, using an electrospinning method. We describe the structure and water flux properties of the nanofibrous fluorinated polyimide membranes. The electrospun nanofibers were deposited across the plates and uniaxially aligned to the collector. In addition, the multi‐layer stacked nanofibrous membranes, consisting of three‐dimensionally ordered nanopores, were produced. The pure water fluxes for the stacked membranes were measured, using a stirred dead‐end filtration cell, and were linearly decreased with an increasing deposition time, indicating that the nanopores formed in the nanofibrous membrane were further narrowed due to the regularly accumulated nanofibers. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
79.
Wound dressings have experienced continuous and significant changes since the ancient times. The development starts with the use of natural materials to simply cover the wounds to the materials of the present time that could be specially made to exhibit various extraordinary functions. The modern bandage materials made of electrospun biopolymers contain various active compounds that are beneficial to the healing of wounds. These materials are fibrous in nature, with the size of fibers segments ranging from tens of nanometers to micrometers. With the right choices of biopolymers used for these fibrous materials, they could enhance the healing of wounds significantly compared with the conventional fibrous dressing materials, such as gauze. These bandages could be made such that they contain bioactive ingredients, such as antimicrobial, antibacterial, and anti‐inflammatory agents, which could be released to the wounds enhancing their healing. In an active wound dressing (AWD), the main purpose is to control the biochemical states of a wound in order to aid its healing process. This review provides an overview of different types of wounds, effective parameters in wound healing and different types of wound dressing materials with a special emphasis paid to those prepared by electrospinning. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
80.
In this work, aligned and molecularly oriented bone‐like PLLA semihollow fiber yarns were manufactured continuously from an optimized homogeneous polymer‐solvent‐nonsolvent system [PLLA, CH2Cl2, and dimethyl formamide (DMF)] by a single capillary electrospinning via self‐bundling technique. Here, it should be emphasized that the self‐bundling electrospinning technique, a very facile electrospinning technique with a grounded needle (which is to induce the self‐bundling of polymer nanofibers at the beginning of electrospinning process), is used for the alignment and molecular orientation of the polymer fiber, and the take‐up speed of the rotating drum for the electrospun fiber yarn collection is very low (0.5 m/s). PLLA can be dissolved in DMF and CH2Cl2 mixed solvent with different ratios. By varying the ratios of mixed solvent system, PLLA electrospun semihollow fiber with the porous inner structure and compact shell wall could be formed, the thickness of the shell and the size of inner pores could be adjusted. The results of polarized FTIR and wide angle X‐ray diffraction investigations verified that as‐prepared PLLA semihollow fiber yarns were well‐aligned and molecularly oriented. Both the formation mechanism of semihollow fibers with core‐shell structure and the orientation mechanism of polymer chains within the polymer fibers were all discussed. The as‐prepared self‐bundling electrospun PLLA fiber yarns possessed enhanced mechanical performance compared with the corresponding conventional electrospun PLLA fibrous nonwoven membranes. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1118–1125, 2010  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号