首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1612篇
  免费   81篇
  国内免费   218篇
化学   1751篇
晶体学   4篇
力学   5篇
综合类   11篇
数学   2篇
物理学   138篇
  2024年   3篇
  2023年   11篇
  2022年   50篇
  2021年   69篇
  2020年   54篇
  2019年   38篇
  2018年   44篇
  2017年   65篇
  2016年   76篇
  2015年   46篇
  2014年   55篇
  2013年   126篇
  2012年   63篇
  2011年   60篇
  2010年   61篇
  2009年   86篇
  2008年   107篇
  2007年   73篇
  2006年   92篇
  2005年   95篇
  2004年   54篇
  2003年   52篇
  2002年   53篇
  2001年   52篇
  2000年   48篇
  1999年   48篇
  1998年   54篇
  1997年   47篇
  1996年   52篇
  1995年   48篇
  1994年   31篇
  1993年   16篇
  1992年   15篇
  1991年   20篇
  1990年   4篇
  1989年   6篇
  1988年   11篇
  1987年   5篇
  1986年   3篇
  1985年   4篇
  1984年   2篇
  1983年   3篇
  1982年   3篇
  1981年   3篇
  1979年   2篇
  1978年   1篇
排序方式: 共有1911条查询结果,搜索用时 140 毫秒
71.
A starter culture ofTrichoderma reesei (Rut-C30) prepared in a liquid fluidized bed reactor (LFBR) gave better growth and greater cellulase production in submerged fermentation than a conventional shake flask inoculum. The LFBR starter was prepared by first coatingT. reesei spores to 0.25 mm size corncob (1.0x108g-1) in a medium containing 1.0% corncob, 0.5 gL-1 xylose and 0.1 gL-1 lactose in a balanced salt solution, then fluidizing the particles in the LFBR for 36 h to allow germination of the spores, and covering the particles with an approx 30 μm thick biofilm. This biofilm that developed in constant adherence to the lignocellulosic carrier, apparently became well adapted to grow rapidly on insoluble cellulose substrates (Solca Floc), and had the enzymes of the cellulase complex induced for increased cellulase production. The LFBR starter used in a stirred tank reactor (STR) gave 15 gL-1 biomass production and 6.5 IU mL-1 overall cellulase activity with a volumetric productivity of 64 IU L-1h-1 in a 5 d fermentation, compared with a 7 d shake flask inoculum that gave 11 gL-1 biomass and 3.2 IU mL-1 cellulase activity, with a volumetric productivity of 31IU L-1h-1. The LFBR starter culture retained its viability in dry storage for 6–9 mo.  相似文献   
72.
Cellulase was covalently immobilized using a hydrophilic polyurethane foam (Hypol®FHP 2002). Compared to the free enzyme, immobilized cellulase showed a dramatic decrease (7.5-fold) in the Michaelis constant for carboxymethylcellulose. The immobilized enzyme also had a broader and more basic pH optimum (pH 5.5–6.0), a greater stability under heat-denaturing or liquid nitrogen-freezing conditions, and was relatively more efficient in utilizing insoluble cellulose substrates. High molecular weight compounds (Blue Dextran) could move throughout the foam matrix, indicating permeability to insoluble celluloses; activity could be further improved 2.4-fold after powdering, foams under liquid nitrogen. The improved kinetic and stability features of the immobilized cellulase combined with advantageous properties of the polyurethane foam (resistance to enzymatic degradation, plasticity of shape and size) suggest that this mechanism of cellulase immobilization has high potential for application in the industrial degradation of celluloses.  相似文献   
73.
Self‐healing hydrogel such as polyacrylic acid (PAA) hydrogel has attracted increasing attention based on its promising potential applications. However, it usually suffers from low strength especially as mechanical device. Herein, a commercial microcrystalline cellulose (MCC) was modified with acrylamide to graft polyacrylamide (PAM) chains on the particle surface. The acrylamide‐modified MCC (AM‐MCC) was then dispersed in monomer solution of acrylic acid to prepare composite hydrogel. The mechanical properties of the obtained composite hydrogels and the self‐healed hydrogels were carefully measured by compressive and tensile tests, and by dynamic mechanical analysis. Our results demonstrate that introduction of a small amount of AM‐MCC such as 3 wt% can not only reinforce the original hydrogel and the healed hydrogel markedly, but also improve self‐healing efficiency obviously. The analyses indicate that in addition to the reversible multi‐interactions such as hydrogen bonding and ionic interactions, the entanglements between the PAA chains of the hydrogel matrix and the PAM chains grafted on the MCC particles have also played an important role on the improvement in mechanical performances and the healing ability of the hydrogel. Moreover, the responsiveness to exterior ion has been tested to indicate potential application of the composite hydrogel as self‐healable sensor.  相似文献   
74.
The ionic liquid 1-N-butyl-3-methylimidazolium chloride ([C4mim]+Cl) was investigated as reaction media for the homogeneous acylation of cellulose with 2-furoyl chloride in the presence of pyridine. The preparation of cellulose furoate depending on the reaction conditions, the cellulose type and the pyridine content was studied. Cellulose furoates with a degree of substitution in the range from 0.46 to 3.0 were accessible, i.e., under mild conditions, with a low excess of reagent and in a short reaction time. The products were characterized by elemental analysis, perpropionylation, 1H- and 13C NMR spectroscopy and FTIR spectroscopy. Thomas Heinze is the member of the European Polysaccharide Network of Excellence (EPNOE), www.epnoe.eu  相似文献   
75.
The effect of the magnetic field on the electrokinetic transport coefficients (permeability coefficient and electro-osmotic permeability coefficient) of water and aqueous solutions of mercuric chloride and glycine through a sintered disc impregnated with cellulose acetate at different potentials, concentrations, and magnetic fields varying up to 21 kg/cm2 are reported at 308.15 K. The phenomenological coefficients characterizing the electro-osmotic flow and the membrane characteristics are also estimated for the various solutions with the object of determining the efficiencies of electrokinetic energy conversion and ζ potential. The effect of magnetic field has been attributed to the molecular orientation of dipoles in solutions and to the change in the structure of the membrane.  相似文献   
76.
Precise determination of d-spacings and compositional ratio of cellulose Iα and Iβ in various native cellulose samples was successfully carried out by synchrotron-radiated X-ray diffraction and time-of-flight (TOF) neutron diffraction from quasi-powder specimens. X-ray diffraction peaks were separated by the deconvolution method using six types of profile function: Gaussian, Lorentzian, intermediate Lorentzian, modified Lorentzian, pseudo-Voigt, and Pearson VII. In terms of R-factors, the pseudo-Voigt function gave the best fit with the observation, and was used for determination of d-spacings. The numerical results for Valonia cellulose were: dIα (1 0 0) = 0.613 nm; dIβ (1 1 0) = 0.603 nm; dIβ (1 1 0) = 0.535 nm; dIα (0 1 0) = 0.529 nm; Iα content = 0.65. The differences determined between dIα (1 0 0) and dIβ (1 1 0) and between dIβ (1 1 0) and dIα (0 1 0) were similar to those previously reported. Comparison between unresolved peaks for the two types of cellulose samples revealed a small but definite difference between dIα (1 1 0) and dIβ (2 0 0). The TOF neutron diffractometry using deuterated samples confirmed this difference. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
77.
Abstract

Bacterial cellulose (BC) is an extracellular natural polymer produced by many microorganisms and its properties could be tailored via specific fabrication methods and culture conditions. There is a growing interest in BC derived materials due to the main features of BC such as porous fibrous structure, high crystallinity, impressive physico-mechanical properties, and high water content. However, pristine BC lacks some features, limiting its practical use in varied applications. Thus, fabrication of BC composites has been attempted to overcome these constraints. This review article overviews most recent advance in the development of BC composites and their potential in biomedicine including wound dressing, tissue engineering scaffolds, and drug delivery. Special emphasis is placed on the fabrication and applications of BC-containing nanofibrous composites for biomedical usage. It summarizes electrospinning of BC-based nanofibers and their surface modification with an outline on challenges and future perspective.  相似文献   
78.
It is commonly observed that the rate of enzymatic hydrolysis of solid cellulose substrates declines markedly with time. In this work the mechanism behind the rate reduction was investigated using two dominant cellulases of Trichoderma reesei: exoglucanase Cel7A (formerly known as CBHI) and endoglucanase Cel7B (formerly EGI). Hydrolysis of steam-pretreated spruce (SPS) was performed with Cel7A and Cel7B alone, and in reconstituted mixtures. Throughout the 48-h hydrolysis, soluble products, hydrolysis rates, and enzyme adsorption to the substrate were measured. The hydrolysis rate for both enzymes decreases rapidly with hydrolysis time. Both enzymes adsorbed rapidly to the substrate during hydrolysis. Cel7A and Cel7B cooperate synergistically, and synergism was approximately constant during the SPS hydrolysis. Thermal instability of the enzymes and product inhibition was not the main cause of reduced hydrolysis rates. Adding fresh substrate to substrate previously hydrolyzed for 24 h with Cel7A slightly increased the hydrolysis of SPS; however, the rate increased even more by adding fresh Cel7A. This suggests that enzymes become inactivated while adsorbed to the substrate and that unproductive binding is the main cause of hydrolysis rate reduction. The strongest increase in hydrolysis rate was achieved by adding Cel7B. An improved model is proposed that extends the standard endo-exo synergy model and explains the rapid decrease in hydrolysis rate. It appears that the processive action of Cel7A becomes hindered by obstacles in the lignocellulose substrate. Obstacles created by disordered cellulose chains can be removed by the endo activity of Cel7B, which explains some of the observed synergism between Cel7A and Cel7B. The improved model is supported by adsorption studies during hydrolysis.  相似文献   
79.
Based on own research activities this survey demonstrates the potential applications of FTIR spectroscopy in wood and wood-product research. This rapid method can be used e.g. with success for determination of lignin in woody materials and pulps. Crucial analytical data of lignins were also determined by quantitative evaluation of FTIR data. The degree of substitution of cellulose derivatives can be estimated. The course of delignification during pulping was monitored using transmission and circular ATR cells for the IR spectroscopy of the cooking liquors. Based on these spectra the Kappa number of pulps can be predicted.  相似文献   
80.
The regularities of vapor-phase nitration of cellulose with HNO3 under conditions of natural convection and hindered heat removal in the absence of air were studied using the nonisothermal kinetic method. It was established that the nitration rate at the depth of conversion of 0.08 to 0.7 is described by the kinetic law d/dt =k 1 p/(1+), wherek 1 = 104.49±0.6 exp(–A/RT) s–1 atm–1, = 10–35.5±15.7exp(B/RT),A = 36.6±3.8 kl mol–1, andB = 203±88 kJ mol–1. The diffusion mechanism of vapor-phase nitration of cellulose, which explains the high value of activation energies, is discussed. The effective diffusion coefficient of HNO3 in cellulose at 25 °3.7 · 10–7 cm2 s–1) and the activation energy of diffusion (38.3±4.2 kJ mol–1) were estimated.For Part 1, see Ref. l.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1981–1985, August, 1996.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号