排序方式: 共有42条查询结果,搜索用时 31 毫秒
11.
Timothy J. H. Hele 《Molecular physics》2017,115(13):1435-1462
Thermal quantum time-correlation functions are of fundamental importance in quantum dynamics, allowing experimentally measurable properties such as reaction rates, diffusion constants and vibrational spectra to be computed from first principles. Since the exact quantum solution scales exponentially with system size, there has been considerable effort in formulating reliable linear-scaling methods involving exact quantum statistics and approximate quantum dynamics modelled with classical-like trajectories. Here, we review recent progress in the field with the development of methods including centroid molecular dynamics , ring polymer molecular dynamics (RPMD) and thermostatted RPMD (TRPMD). We show how these methods have recently been obtained from ‘Matsubara dynamics’, a form of semiclassical dynamics which conserves the quantum Boltzmann distribution. We also apply the Matsubara formalism to reaction rate theory, rederiving t → 0+ quantum transition-state theory (QTST) and showing that Matsubara-TST, like RPMD-TST, is equivalent to QTST. We end by surveying areas for future progress. 相似文献
12.
13.
CH3NO2和CH3自由基吸氢反应途径和变分速率常数计算 总被引:1,自引:0,他引:1
采用MP2(full)/6-311G(d, p)从头算方法,优化了硝基甲烷和甲基自由基吸氢反应的过渡态结构,经QCISD(T)方法进行能量校正,得出该反应的正逆向反应的活化位垒分别是58.21 kJ•mol-1和67.17 kJ•mol-1.沿IRC分析指出该反应是氢转移协同反应,而且在反应途径上存在一个引导反应进行的振动模式,这一反应模式引导反应进行的区间在反应坐标S的-0.9~1.0(amu)1/2bohr之间;在温度为800~2600 K范围内,运用改进的变分过渡态理论(ICVT),计算了该反应的速率常数,并与实验类比所得的速率常数随温度的变化趋势进行了比较. 相似文献
14.
H+CH3NO2→H2+CH2NO2反应途径和变分速率常数计算研究 总被引:1,自引:0,他引:1
采用MP2(FULL)/6-311G**从头算方法,优化了H+CH3NO2——H2+CH2NO2反应的过渡态结构,得出该反应的正逆反应的活化位垒分别是82.73和57.14 kJ·mol-1 .沿IRC分析指出该反应是一个H—H键生成和C—H键断裂的协同反应,而且在反应途径上存在一个引导反应进行的振动模式,这一反应模式引导反应进行的区间在- 0.7~0.2(amu)1/2·a0之间;在 1000~1400 K温度范围内,运用变分过渡态理论(CVT),计算了该反应的速率常数,计算结果与实验相一致. 相似文献
15.
Kaiya Wang Jacobs H. Jordan Xiao‐Yu Hu Leyong Wang 《Angewandte Chemie (International ed. in English)》2020,59(33):13712-13721
Nanospaces are ubiquitous in the realm of biological systems and are of significant interest among supramolecular chemists. Understanding chemical behavior within nanospaces offers new perspectives on biological phenomena in nature and opens the way to highly unusual and selective forms of catalysis. Supramolecular chemistry exploits weak, yet effective, intermolecular interactions such as hydrogen bonding, metal‐ligand coordination, and the hydrophobic effect to assemble nano‐sized molecular architectures, providing reactions with remarkable rate acceleration, substrate specificity, and product selectivity. In this minireview, the focus is on the strategies that supramolecular chemists use to emulate the efficiency of biological processes, and elucidating how chemical reactivity is efficiently controlled within well‐defined nanospaces. Approaches such as orientation and proximity of substrate, transition‐state stabilization, and active‐site incorporation will be discussed. 相似文献
16.
Ariel G. Gale Tuguldur T. Odbadrakh George C. Shields 《International journal of quantum chemistry》2020,120(20):e26469
The dimerization of glycine is the simplest oligomerization of amino acids and plays an important role in biology. Although this reaction is thermodynamically unfavorable in the aqueous phase, it has been shown to be spontaneous in the gas phase and proceeds via two different concerted reaction mechanisms known as cis and trans. This may have profound implications in prebiotic chemistry as common atmospheric prenucleation clusters are thought to have participated in gas-phase reactions in the early Earth's atmosphere. We hypothesize that particular arrangements of water molecules in these clusters could lead to lowering of the reaction barrier of amino acid dimerization and could lead to abiotic catalysis toward polypeptides. We test our hypothesis on a system of the cis transition state of glycine dimerization solvated by one to five water molecules using a combination of a genetic algorithm-based configurational sampling, density functional theory geometries, and domain-based local pair natural orbital coupled-cluster electronic structure. First, we discuss the validity of the model chemistries used to obtain our results. Then, we show that the Gibbs free energy barrier for the concerted cis mechanism can indeed be lowered by the addition of up to five water molecules, depending on the temperature. 相似文献
17.
Bin Jing Jing-yao Liu Ze-sheng Li Ying Wang Li Wang Hong-qing He Chia-chung Sun 《Journal of Molecular Structure》2005,732(1-3):225-231
The dynamics properties of the hydrogen abstraction reaction CF3O+CH4→CF3OH+CH3 are studied by dual-level direct dynamics method. Optimization calculations are preformed by B3LYP and MP2 with the 6-311G(d,p) basis set, and the single-point calculations are done at the multi-coefficient correction method based on quadratic configuration interaction with single and double excitations (MC-QCISD) method. The rate constants are evaluated by canonical variational transition-state theory with a small-curvature tunneling correction over a wide range of temperature 200–2000 K. The agreement between theoretical and experimental rate constants is good in the measured temperature range. The calculated results show that the variational effect is small and almost neglected over the whole temperature range, whereas, the tunneling correction plays a role in the lower temperature range. The kinetic isotope effect for the reaction is ‘normal’. The value of kH/kD is 2.38 at room temperature and it decreases with the temperature increasing. 相似文献
18.
Dr. Johanna Novacek Joseph A. Izzo Prof. Dr. Mathew J. Vetticatt Prof. Dr. Mario Waser 《Chemistry (Weinheim an der Bergstrasse, Germany)》2016,22(48):17339-17344
Chiral bifunctional urea‐containing ammonium salts were found to be very efficient catalysts for asymmetric α‐hydroxylation reactions of β‐ketoesters with oxaziridines under base‐free conditions. The reaction is accompanied by a simultaneous kinetic resolution of the oxaziridine and a plausible and so far unprecedented bifunctional transition‐state model has been obtained by means of DFT calculations. 相似文献
19.
1INTRODUCTIONTheconformationandvariousphysicalprope-rtiesofdichalcogencompoundsR-X-Y-R?(X,Y=O,S,Se,andTe)havebeenatopicofseveralexperi-mentalandtheoreticalinvestigations[1].CompoundscontainingS=SandS=Obondshavelongbeenpro-posedasintermediatesinorganicsynthesisand,onoccasion,asstableentities[2~18].Despitethecom-monlyusedrepresentationofS–Obondinsulfoxi-desandothersulfinylderivativesasS=O,sulfoxidesareinmanywaysbestdescribedasylideswithhighlypolarizedS–Oσ-bondbecauseofelectro-sta… 相似文献
20.