首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1976篇
  免费   211篇
  国内免费   113篇
化学   1179篇
晶体学   7篇
力学   64篇
综合类   34篇
数学   83篇
物理学   933篇
  2024年   8篇
  2023年   43篇
  2022年   62篇
  2021年   68篇
  2020年   64篇
  2019年   82篇
  2018年   61篇
  2017年   83篇
  2016年   81篇
  2015年   63篇
  2014年   74篇
  2013年   158篇
  2012年   111篇
  2011年   101篇
  2010年   104篇
  2009年   109篇
  2008年   122篇
  2007年   115篇
  2006年   100篇
  2005年   100篇
  2004年   71篇
  2003年   51篇
  2002年   60篇
  2001年   65篇
  2000年   75篇
  1999年   30篇
  1998年   44篇
  1997年   23篇
  1996年   10篇
  1995年   21篇
  1994年   25篇
  1993年   13篇
  1992年   19篇
  1991年   8篇
  1990年   8篇
  1989年   12篇
  1988年   10篇
  1987年   3篇
  1986年   3篇
  1985年   7篇
  1984年   9篇
  1983年   6篇
  1982年   3篇
  1981年   4篇
  1980年   2篇
  1979年   2篇
  1976年   2篇
  1975年   1篇
  1974年   1篇
  1971年   2篇
排序方式: 共有2300条查询结果,搜索用时 15 毫秒
71.
Biomaterial scaffolds are the cornerstone to supporting 3D tissue growth. Optimized scaffold design is critical to successful regeneration, and this optimization requires accurate knowledge of the scaffold's interaction with living tissue in the dynamic in vivo milieu. Unfortunately, non‐invasive methods that can probe scaffolds in the intact living subject are largely underexplored, with imaging‐based assessment relying on either imaging cells seeded on the scaffold or imaging scaffolds that have been chemically altered. In this work, the authors develop a broadly applicable magnetic resonance imaging (MRI) method to image scaffolds directly. A positive‐contrast “bright” manganese porphyrin (MnP) agent for labeling scaffolds is used to achieve high sensitivity and specificity, and polydopamine, a biologically derived universal adhesive, is employed for adhering the MnP. The technique was optimized in vitro on a prototypic collagen gel, and in vivo assessment was performed in rats. The results demonstrate superior in vivo scaffold visualization and the potential for quantitative tracking of degradation over time. Designed with ease of synthesis in mind and general applicability for the continuing expansion of available biomaterials, the proposed method will allow tissue engineers to assess and fine‐tune the in vivo behavior of their scaffolds for optimal regeneration.  相似文献   
72.
Plant derived flavonoids have not been well explored in tissue engineering applications due to difficulties in efficient formulations with biomaterials for controlled presentation. Here, the authors report that surface coating of epigallocatechin gallate (EGCG) on polymeric substrates including poly (L‐lactic acid) (PLLA) nanofibers can be performed via oxidative polymerization of EGCG in the presence of cations, enabling regulation of biological functions of multiple cell types implicated in bone regeneration. EGCG coating on the PLLA nanofiber promotes osteogenic differentiation of adipose‐derived stem cells (ADSCs) and is potent to suppress adipogenesis of ADSCs while significantly reduces osteoclastic maturation of murine macrophages. Moreover, EGCG coating serves as a protective layer for ADSCs against oxidative stress caused by hydrogen peroxide. Finally, the in vivo implantation of EGCG‐coated nanofibers into a mouse calvarial defect model significantly promotes the bone regeneration (61.52 ± 28.10%) as compared to defect (17.48 ± 11.07%). Collectively, the results suggest that EGCG coating is a simple bioinspired surface modification of polymeric biomaterials and importantly can thus serve as a promising interface for tuning activities of multiple cell types associated with bone fracture healing.  相似文献   
73.
Cardiovascular disease remains the leading cause of death. Damaged heart muscle is the etiology of heart failure. Heart failure is the most frequent cause of hospital and emergency room admissions. As a differentiated organ, current therapeutics and techniques can not repair or replace the damaged myocardial tissue. Myocardial tissue engineering is one of the promising treatment modalities for repairing damaged heart tissue in patients with heart failure. In this work, random Polylactic acid (PLA), Polylactic acid/Polyethylene glycol (PLA/PEG) and random and aligned Polylactic acid/Polyethylene glycol/Collagen (PLA/PEG/COL) nanofiber patches were successfully produced by the electrospinning technique. In vitro cytotoxic test (MTT), morphological (SEM), molecular interactions between the components (FT-IR), thermal analysis (DSC), tensile strength and physical analysis were carried out after production. The resulting nanofiber patches exhibited beadless and smooth structures. When the fiber diameters were examined, it was observed that the collagen doped random nanofiber patches had the lowest fiber diameter value (755 nm). Mechanical characterization results showed that aligned nanofiber patches had maximum tensile strength (5.90 MPa) values compared to PLA, PLA/PEG, and PLA/PEG/COL (random). In vitro degradation test reported that aligned patch had the highest degradation ratio. The produced patches displayed good alignment with tissue on cardiomyocyte cell morphology studies. In conclusion, newly produced patches have noticeable potential as a tissue-like cardiac patch for regeneration efforts after myocardial infarction.  相似文献   
74.
We study the nonlinearity for the zigzag graphene nanoribbons (ZGNRs) with zigzag triangular holes (ZTHs). We show that in the presence of an external uniform magnetic field, a two-dimensional f-deformed Dirac oscillator can be used to describe the dynamics of the electrons in the ZGNRs with ZTHs. It is shown for the first time that the magnetic field direction has effect on the chirality of charge carriers in the ZGNRs punched with triangular holes. We also obtain the Landau-level spectrum in the weak and strong magnetic field regimes. Additionally, we compare Landau-level spectrum of this graphene-based device in the f-deformed scenario and original one. Our results provide a general viewpoint for the development of the zigzag graphene nanoribbons.  相似文献   
75.
This present study was designed to investigate the pharmacokinetic profiles and tissue distribution characteristics of clevidipine and its primary metabolite H152/81 in rats following a single intravenous administration of clevidipine butyrate injectable emulsion. For this study, a sensitive and selective liquid chromatography–tandem mass spectrometry (LC–MS/MS) method was established and validated for the simultaneous quantitation of clevidipine and H152/81 in rat whole blood and various tissues. A Hedera ODS‐2 column with two gradient elution programs was employed for the troubleshooting of matrix effect on the detection of analytes among different biological samples. The experimental data showed that clevidipine represented quick elimination from blood with a half‐life of about 4.3 min and rapid distribution in all of the investigated tissues after administration; the highest concentration of clevidipine was found in the heart whereas the lowest concentration was detected in the liver. In addition, clevidipine was almost undetectable in most tissues except for heart and brain at 90 min post‐dosing, suggesting that there was no apparent long‐term accumulation in rat tissues. For H152/81, the peak concentration of 3714 ± 319 ng/mL occurred at 0.129 ± 0.048 h, the half‐life was 10.08 ± 1.45 h and area under the concentration–time curve was 42091 ± 3812 ng h/mL after drug administration. In addition, H152/81 was found at significant concentration levels in all tissues, in descending order of lung, kidney, heart, liver, spleen and brain at each time point. The results of current study offer useful clues for better understanding the distribution and metabolism of clevidipine butyrate injectable emulsion in vivo.  相似文献   
76.
A simple and sensitive liquid chromatography/electrospray ionization tandem mass spectrometry (LC‐ESI‐MS/MS) method was developed and validated for determination of two highly lipophilic anticancer drug candidates, LG1980 and GH501, in rat plasma and tissues (liver, kidney and femur bones). LG1980 and GH501 were extracted from rat plasma and tissue homogenates using liquid–liquid extraction. The method provided a linear range of 1.0–200.0 ng/mL for GH501 in plasma and LG1980 in plasma and liver. For both analytes in other tissue homogenates the linear range was 2.0–400.0 ng/mL. The method was validated with precision within 15% relative standard deviation, accuracy within 15% relative error and a consistent recovery. This method has been successfully applied in two preclinical studies for LG1980 and GH501 to determine their concentrations in rat plasma, liver, kidney and bone over 24 h after intravenous injection of compounds.  相似文献   
77.
Shenkang injection is a traditional Chinese formula with good curative effect on chronic renal failure. In this paper, a novel, rapid and sensitive ultra‐high‐performance liquid chromatography coupled with Q Exactive hybrid quadrupole Orbitrap high‐resolution accurate mass spectrometry was developed and validated for simultaneous determination of seven bioactive constituents of Shenkang injection in rat plasma and tissues after intravenous administration. Acetonitrile was used as a protein precipitation agent in biological samples disposal with carbamazepine as internal standard. The chromatographic separation was carried out on a C18 column with a gradient mobile phase consisting of acetonitrile and water (containing 0.1% formic acid). The MS analysis was performed in the full‐scan positive and negative ion mode. The lower limits of quantification for the seven analytes in rat plasma and tissues were 0.1–10 ng/mL. The validated method was successfully applied to tissue distribution and pharmacokinetic studies of Shenkang injection after intravenous administration. The results of the tissue distribution study showed that the high concentrations of seven constituents were primarily in the kidney tract. This is the first report of the application of Q‐Orbitrap with full‐scan mass spectrometry in tissue distribution and pharmacokinetic studies of Shenkang injection.  相似文献   
78.
利用近红外光谱检测多层组织血氧饱和度的研究   总被引:2,自引:0,他引:2  
高博  魏蔚  龚敏  王丽 《光谱学与光谱分析》2009,29(11):2922-2925
利用近红外光谱无创检测生物组织血氧饱和状态,是一种极富研究和应用前景的检测技术,在临床检测中被广泛应用.但常规临床检测应用于指端仅反映局部血氧饱和度信息,在使用中具有局限性,信号的可信度也存在质疑.该文提出了一种采用反射式脉搏血氧饱和度检测技术检测生物多层组织氧合状况的新方法,该方法通过调节入射光强以适应解剖学中生物组织多层结构的检测.应用该方法针对手指结构的实验结果表明,随着入射光强的改变,反映血氧饱和状态的光电脉搏波信号有显著变化.结合手指解剖学分析表明,光电脉搏波信号的变化与手指的多层面组织结构相对应,反映不同层面血氧饱和状态.这一特点表明,通过此法可以针对生物组织的多层结构进行测量.  相似文献   
79.
Excited states of the 119Xe nucleus have been studied by using in-beam γ-ray spectroscopy with the 107Ag ( 16O, p3n) 119Xe fusion-evaporation reaction at a beam energy of 85 MeV. The level scheme of 119Xe has been derived from γ-γ coincidence and γ-γ angular correlation analyses. We have, for the first time, established the second negative-parity favored and unfavored states built on the 11/2- state, namely the yrare rotational bands in 119Xe. In contrast to the behavior of the yrast bands where the favored states are lying lower in energy, the yrare favored states were observed to lie above the unfavored band. Such a signature inversion in 119Xe is changed to be normal at I = 12?. Received: 8 January 2002 / Accepted: 18 April 2002  相似文献   
80.
用于细胞及组织培养的中等强度LED生物光源   总被引:1,自引:0,他引:1  
研制出可用于细胞及组织培养的中等强度发光二极管光源,介绍了光源的光路原理和简要结构,测试了该光源的辐射照度及其强度分布,使用统计分析软件SPSS拟合得到该光源的辐射照度经验公式。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号