首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3151篇
  免费   1286篇
  国内免费   634篇
化学   2914篇
晶体学   58篇
力学   362篇
综合类   16篇
数学   110篇
物理学   1611篇
  2024年   18篇
  2023年   84篇
  2022年   200篇
  2021年   245篇
  2020年   350篇
  2019年   314篇
  2018年   303篇
  2017年   388篇
  2016年   454篇
  2015年   386篇
  2014年   456篇
  2013年   491篇
  2012年   331篇
  2011年   217篇
  2010年   113篇
  2009年   84篇
  2008年   61篇
  2007年   69篇
  2006年   65篇
  2005年   60篇
  2004年   60篇
  2003年   45篇
  2002年   38篇
  2001年   26篇
  2000年   26篇
  1999年   18篇
  1998年   20篇
  1997年   20篇
  1996年   21篇
  1995年   15篇
  1994年   16篇
  1993年   10篇
  1992年   13篇
  1991年   8篇
  1990年   14篇
  1989年   5篇
  1988年   8篇
  1987年   5篇
  1986年   4篇
  1985年   3篇
  1983年   1篇
  1982年   3篇
  1980年   1篇
  1957年   2篇
排序方式: 共有5071条查询结果,搜索用时 15 毫秒
71.
The field of long acenes, the narrowest of the zig-zag graphene nanoribbons, has been an area of significant interest in the past decade because of its potential applications in organic electronics, spintronics and plasmonics. However the low solubility and high reactivity of these compounds has so far hindered their preparation on large scales. We report here a concise strategy for the synthesis of higher acenes through Diels–Alder condensation of arynes with a protected tetraene ketone. After deprotection by cleavage of the ketal, the obtained monoketone precursors cleanly yield the corresponding acenes through quantitative cheletropic thermal decarbonylation in the solid state, at moderate temperatures of 155 to 205 °C. This approach allows the preparation of heptacene, benzo[a]hexacene, cis- and trans-dibenzopentacene and offers a valuable new method for the synthesis of even larger acenes.  相似文献   
72.
Graphene-based materials exhibit outstanding physical properties and so are potentially applicable in a great variety of fields. Unlike their corresponding oxides, graphite and graphene are not prone to functionalization. Diels–Alder reactions are among the scarce reactions that they can occur without disrupting their conjugated sp2 systems. Herein, the reaction between graphite and 3,6-di(2-pyridyl)-1,2,4,5-tetrazine under different conditions affords several graphene-based materials consisting of dipyridylpyridazine-functionalized few-layer graphene, multilayer graphene and graphite, the sheets of which act as ligands for the grafting of a europium complex. These three materials show strong red emission under 365 nm UV radiation. Their emitting particles can be visualized by confocal microscopy. The rich coordination chemistry of dipyridylpyridazine ligands has potential novel properties for similarly functionalized graphene-based materials grafted with other metal complexes.  相似文献   
73.
Novel functionalized graphene adsorbent was prepared and characterized using different techniques. The prepared adsorbent was applied for the removal of cadmium ions from aqueous solution. A response surface methodology was used to evaluate the simple and combined effects of the various parameters, including adsorbent dosage, pH, and initial concentration. Under the optimal conditions, the cadmium removal performance of 70% was achieved. A good agreement between experimental and predicted data in this study was observed. The experimental results revealed of cadmium adsorption with high linearity follow Langmuir isotherm model with maximum adsorption capacity of 502 mg g?1, and the adsorption data fitted well into pseudo‐second order model. Thermodynamic studies showed that adsorption process has exothermic and spontaneous nature. The recommended optimum conditions are: cadmium concentration of 970 mg L?1, adsorbent dosage of 1 g L?1, pH of 6.18, and T = 25 °C. The magnetic recovery of the adsorbent was performed using a magnetic surfactant to form a noncovalent magnetic functionalized graphene. After magnetic recovery of the adsorbent both components (adsorbent and magnetic surfactant) were recycled by tuning the surface charges through changing the pH of the solution. Desorption behavior studied using HNO3 solution indicated that the adsorbent had the potential for reusability.  相似文献   
74.
Ferrocene tethered N‐heterocyclic carbene‐copper complex anchored on graphene ([GrFemImi]NHC@Cu complex) has been synthesized by covalent grafting of ferrocenyl ionic liquid in the matrix of graphene followed by metallation with copper (I) iodide. The [GrFemImi]NHC@Cu complex has been characterized by fourier transform infrared (FT‐IR), fourier transform Raman (FT‐Raman), CP‐MAS 13C NMR spectroscopy, transmission electron microscopy (TEM), thermogravimetric analysis (TGA), energy dispersive X‐ray (EDX) analysis, X‐ray photoelectron spectroscopy (XPS), Brunauer–Emmett–Teller (BET) surface area analysis and X‐ray diffractometer (XRD) analysis. This novel complex served as a robust heterogeneous catalyst for the synthesis of bioactive N‐aryl sulfonamides from variety of aryl boronic acids and sulfonyl azides in ethanol by Chan‐Lam coupling. Recyclability experiments were executed successfully for six consecutive runs.  相似文献   
75.
Using highly soluble bromo‐functionalized reduced graphene oxide (RGBr) as a key graphene template for surface‐directing Sonogashira–Hagihara polymerization, a novel soluble poly(arylene‐ethynylene)‐grafted reduced graphene oxide, hereafter abbreviated as PAE‐g‐RGO, was prepared in situ. The entirely different electron distribution of LUMO and HOMO of PAE‐g‐RGO suggested the existence of a charge‐transfer (CT) state (PAE.?–RGO.+). The negative ΔGCS value (?2.57 eV) indicates that the occurrence of the charge separation via 1RGO* in o‐DCB is exothermic and favorable. Upon irradiation with 365 nm light, the light‐induced electron paramagnetic resonance (LEPR) spectrum of PAE‐g‐RGO showed a decrease in the spin‐state density owing to photoinduced intramolecular electron transfer events in this system. A sandwich‐type Al/PAE‐g‐RGO/ITO device showed representative bistable electrical switching behavior. The nonvolatile memory performance was attributed to the CT‐induced conductance changes, which was supported by molecular computation results and conductive atomic force microscopy (C‐AFM) images.  相似文献   
76.
Nonylphenols (NPNs) are persistent endocrine disruptors and their release into the environment is causing increasing concern about their impact on human health. Herein, an ultrasensitive electrochemical immunosensor was developed for the detection of NPNs in the leachates from 61 instant noodle containers (INCs) from 8 countries across Southeast Asia. Gold nanoclusters (AuNCs) were self-assembled with reduced graphene oxide (rGO; polyethylenimine–rGO) and used to modify a glassy carbon electrode (GCE), which showed excellent electrical conductivity. An anti-NPN antibody was then immobilized on the AuNCs and, if it specifically bound NPN, the reduction in conductivity of the GCE was remarkable. The designed immunosensor has a low detection limit (5.25 ng L−1) and high sensitivity for NPNs in the leachates of INCs. Remarkably, the leaching of estrogen-like compounds from different plastics of INCs and the correlation between NPN content and total estrogenic activity were thoroughly investigated. High temperatures caused polyethylene and polystyrene INCs to release more estrogen-like compounds than that of polypropylene INCs; this increased release of NPNs was associated with higher estrogen activity in living cells. These data fill the gap in human and environmental exposure to estrogen-like compounds through INCs.  相似文献   
77.
In this study, the organosilane‐functionalized graphene oxide as a stabilizer was prepared by a facile one‐step silylation approach. [Cu(PPh3)3Cl] complex was successfully immobilized onto the graphene oxide surface through coordination interaction with organosilane ligand spacers. The supported catalyst showed enhanced catalytic performance toward Sonogashira reaction of aryl halides with phenylacetylene in water solvent compared with the homogeneous analogues, and it could be readily recycled and reused several times without discernible loss of its activity.  相似文献   
78.
Dopamine (DA) is an important neurotransmitter, which is created and released from the central nervous system. It plays a crucial role in human activities, like cognition, emotions, and response to anything. Maladjustment of DA in human blood serum results in different neural diseases, like Parkinson's and Schizophrenia. Consequently, researchers have started working on DA detection in blood serum, which is undoubtedly a hot research area. Electrochemical sensing techniques are more promising to detect DA in real samples. However, utilizing conventional electrodes for selective determination of DA encounters numerous problems due to the coexistence of other materials, such as uric acid and ascorbic acid, which have an oxidation potential close to DA. To overcome such problems, researchers have put their focus on the modification of bare electrodes. The aim of this review is to present recent advances in modifications of most used bare electrodes with carbonaceous materials, especially graphene, its derivatives, and carbon nanotubes, for electrochemical detection of DA. A brief discussion about the mechanistic phenomena at the electrode interface has also been included in this review.  相似文献   
79.
A novel nanocatalyst was designed and prepared. Initially, the surface of magnetic graphene oxide (M‐GO) was modified using thionyl chloride, tris(hydroxymethyl)aminomethane and acryloyl chloride as linkers which provide reactive C═C bonds for the polymerization of vinylic monomers. Separately, β‐cyclodextrin (β‐CD) was treated with acryloyl chloride to provide a modified β‐CD. Then, in the presence methylenebisacrylamide as a cross‐linker, monomers of modified β‐CD and acrylamide were polymerized on the surface of the pre‐prepared M‐GO. Finally, palladium acetate and sodium borohydride were added to this composite to afford supported palladium nanoparticles. This fabricated nanocomposite was fully characterized using various techniques. The efficiency of this easily separable and reusable heterogeneous catalyst was successfully examined in Suzuki–Miyaura cross‐coupling reactions of aryl halides and boronic acid as well as in modified Suzuki–Miyaura cross‐coupling reactions of N‐acylsuccinimides and boronic acid in green media. The results showed that the nanocatalyst was efficient in coupling reactions for direct formation of the corresponding biphenyl as well as benzophenone derivatives in green media based on bio‐based solvents. In addition, the nanocatalyst was easily separable, using an external magnet, and could be reused several times without significant loss of activity under the optimum reaction conditions.  相似文献   
80.
《中国物理 B》2021,30(6):60303-060303
This paper proposes a three-dimensional(3 D) controlled quantum teleportation scheme for an unknown single-qutrit state. The scheme is first introduced in an ideal environment, and its detailed implementation is described via the transformation of the quantum system. Four types of 3 D-Pauli-like noise corresponding to Weyl operators are created by Kraus operators: trit-flip, t-phase-flip, trit-phase-flip, and t-depolarizing. Then, this scheme is analyzed in terms of four types of noisy channel with memory. For each type of noise, the average fidelity is calculated as a function of memory and noise parameters, which is afterwards compared with classical fidelity. The results demonstrate that for trit-flip and t-depolarizing noises, memory will increase the average fidelity regardless of the noise parameter. However, for t-phase-flip and trit-phaseflip noises, memory may become ineffective in increasing the average fidelity above a certain noise threshold.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号