首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16906篇
  免费   872篇
  国内免费   710篇
化学   17171篇
晶体学   8篇
力学   5篇
综合类   42篇
数学   6篇
物理学   1256篇
  2024年   32篇
  2023年   228篇
  2022年   438篇
  2021年   395篇
  2020年   536篇
  2019年   534篇
  2018年   484篇
  2017年   668篇
  2016年   814篇
  2015年   774篇
  2014年   708篇
  2013年   1030篇
  2012年   1156篇
  2011年   1044篇
  2010年   860篇
  2009年   1061篇
  2008年   860篇
  2007年   1074篇
  2006年   855篇
  2005年   770篇
  2004年   709篇
  2003年   590篇
  2002年   440篇
  2001年   243篇
  2000年   249篇
  1999年   236篇
  1998年   220篇
  1997年   201篇
  1996年   208篇
  1995年   188篇
  1994年   149篇
  1993年   132篇
  1992年   117篇
  1991年   161篇
  1990年   77篇
  1989年   51篇
  1988年   43篇
  1987年   27篇
  1986年   27篇
  1985年   22篇
  1984年   16篇
  1983年   11篇
  1982年   13篇
  1981年   8篇
  1980年   5篇
  1979年   5篇
  1973年   3篇
  1972年   2篇
  1967年   2篇
  1959年   2篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
建立高效液相色谱-串联质谱法同时测定土壤中戊唑醇、腈菌唑、腈苯唑、氟硅唑、三唑酮、丙环唑、烯唑醇、苯醚甲环唑8种杀菌剂残留量的方法。采用QuEChERS样品前处理方法对土壤样品进行提取、净化和富集,用电喷雾离子源、正负离子扫描,以多反应监测(MRM)模式进行定性和定量分析。在优化的实验条件下,8种杀菌剂的质量浓度在0.01~0.50 mg/L范围内与色谱峰面积均成良好的线性关系,相关系数均大于0.995,方法检出限为0.005~0.010 mg/kg。样品平均加标回收率为85.6%~102.2%,测定结果的相对标准偏差为4.6%~13.2%(n=5)。该方法操作简便,灵敏度和准确度高,满足土壤中戊唑醇等8种杀菌剂残留量的测定要求。  相似文献   
992.
Ruthenium is a platinoid that exhibits a range of unique chemical properties in solution, which are exploited in a variety of applications, including luminescent probes, anticancer therapies, and artificial photosynthesis. This paper focuses on a recently demonstrated ability of this metal in its +3 oxidation state to form highly stable complexes with tris (hydroxymethyl)aminomethane (H2NC(CH2OH)3, Tris‐base or T) and imidazole (Im) ligands, where a single RuIII cation is coordinated by two molecules of each T and Im. High‐resolution electrospray ionization mass spectrometry (ESI MS) is used to characterize RuIII complexes formed by placing a RuII complex [(NH3)5RuIICl]Cl in a Tris buffer under aerobic conditions. The most abundant ionic species in ESI MS represent mononuclear complexes containing an oxidized form of the metal, ie, [XnRuIIIT2 – 2H]+, where X could be an additional T (n = 1) or NH3 (n = 0‐2). Di‐ and tri‐metal complexes also give rise to a series of abundant ions, with the highest mass ion representing a metal complex with an empirical formula Ru3C24O21N6H66 (interpreted as cyclo(T2RuO)3, a cyclic oxo‐bridged structure, where the coordination sphere of each metal is completed by two T ligands). The empirical formulae of the binuclear species are consistent with the structures representing acyclic fragments of cyclo(T2RuO)3 with addition of various combinations of ammonia and dioxygen as ligands. Addition of histidine in large molar excess to this solution results in complete disassembly of poly‐nuclear complexes and gives rise to a variety of ionic species in the ESI mass spectrum with a general formula [RuIIIHiskTm (NH3)n ? 2H]+, where k = 0 to 2, m = 0 to 3, and n = 0 to 4. Ammonia adducts are present for all observed combinations of k and m, except k = m = 2, suggesting that [His2RuIIIT2 ? 2H]+ represents a complex with a fully completed coordination sphere. The observed cornucopia of RuIII complexes formed in the presence of histidine is in stark contrast to the previously reported selective reactivity of imidazole, which interacts with the metal by preserving the RuT2 core and giving rise to a single abundant ruthenium complex (represented by [Im2RuIIIT2 ? 2H]+ in ESI mass spectra). Surprisingly, the behavior of a hexa‐histidine peptide (HHHHHH) is similar to that of a single imidazole, rather than a single histidine amino acid: The RuT2 core is preserved, with the following ionic species observed in ESI mass spectra: [HHHHHH·(RuIIIT2)m ? (3m‐1)H]+ (m = 1‐3). The remarkable selectivity of the imidazole interaction with the RuIIIT2 core is rationalized using energetic considerations at the quantum mechanical level of theory.  相似文献   
993.
A fast methodology for the assay of parabens in drug and cosmetic preparations has been presented. The procedure developed is based on paper spray tandem mass spectrometry and isotope dilution approach. For each investigated paraben, the corresponding labeled standard has been used in order to improve the accuracy and reproducibility of the analyses. The MS experiments have been performed under MRM conditions, monitoring the transitions [M‐H]? → m/z 92 and [M‐H]? → m/z 98, respectively, for each analyte and the corresponding labeled internal standard. The quantitative assay has been performed using a calibration curve built from 2 to 15 mg/L. The method accuracy, in all case near 100%, was evaluated using fortified samples at two concentration levels, which are representative of the lower and the higher portion of calibration curve. The good values of LOQ, LOD, and reproducibility confirm the consistency of the developed approach.  相似文献   
994.
Kinetic isotope effects (KIEs) occurring in mass spectrometry (MS) can provide in‐depth insights into the fragmentation behaviors of compounds of interest in MS. Yet, the fundamentals of KIEs in collision‐induced dissociation (CID) in tandem mass spectrometry (MS/MS) are unclear, and information about chlorine KIEs (Cl‐KIEs) of organochlorines in MS is particularly scarce. This study investigated the Cl‐KIEs of dichloromethane, trichloroethylene, and tetrachloroethylene during CID using gas chromatography‐electron ionization triple‐quadrupole MS/MS. Cl‐KIEs were evaluated with MS signal intensities. All the organochlorines presented large inverse Cl‐KIEs (<1, the departures of Cl‐KIEs from 1 denote the magnitudes of Cl‐KIEs), showing the largest magnitudes of 0.797, 0.910, and 0.892 at the highest collision energy (60 eV) for dichloromethane, trichloroethylene, and tetrachloroethylene, respectively. For dichloromethane, both intra‐ion and inter‐ion Cl‐KIEs were studied, within the ranges of 0.820–1.020 and 0.797–1.016, respectively, showing both normal and inverse Cl‐KIEs depending on collision energies. The observed Cl‐KIEs generally declined from large normal to extremely large inverse values with increasing collision energies from 0 to 60 eV but were inferred to be independent of MS signal intensities. The Cl‐KIEs are dominated by critical energies at low internal energies of precursor ions, resulting in normal Cl‐KIEs; while at high internal energies, the Cl‐KIEs are controlled by rotational barriers (or looseness/tightness of transition states), which lead to isotope‐competitive reactions in dechlorination and thereby inverse Cl‐KIEs. It is concluded that the Cl‐KIEs may depend on critical energies, bond strengths, available internal energies, and transition state looseness/tightness. The findings of this study yield new insights into the fundamentals of Cl‐KIEs of organochlorines during CID and may be conducive to elucidating the underlying mechanisms of KIEs in collision‐induced and photo‐induced reactions in the actual world.  相似文献   
995.
This study is aimed to observe changes in fatty acid profiles by time of flight secondary ion mass spectrometry (ToF‐SIMS) in breast muscle tissues of broilers. Four different groups were identified. The source of fat in group I was soy oil (rich in linoleic acid, ω‐6), group II received linseed oil (ω‐3), and the third group was fed a mixture of the two mentioned oils. Broilers in the control group were fed with beef tallow, used in mass commercial production. The results reveal that the use of vegetable oils in animal nutrition determines the lipid profile of fatty acids. ToF‐SIMS measurements showed that the lipid profile of muscle fibers and intramuscular fat reflect the composition of fats used as feed additives. In both structures, the ratio of ω‐6/ω‐3 fatty acids, which is most favorable for human health, was found in the groups in which a mixture of vegetable oils and a supplement of linseed oil were used.  相似文献   
996.
997.
Soot (sometimes referred to as black carbon) is produced when hydrocarbon fuels are burned. Our hypothesis is that polynuclear aromatic hydrocarbon (PAH) molecules are the dominant component of soot, with individual PAH molecules forming ordered stacks that agglomerate into primary particles (PP). Here we show that the PAH composition of soot can be exactly determined and spatially resolved by low‐fluence laser desorption ionization, coupled with high‐resolution mass spectrometry imaging. This analysis revealed that PAHs of 239–838 Da, containing few oxygenated species, comprise the soot observed in an ethylene diffusion flame. As informed by chemical graph theory (CGT), the vast majority of species observed in the sampled particulate matter may be described as benzenoids, consisting of only fused 6‐membered rings. Within that limit, there is clear evidence for the presence of radical PAH in the particulate samples. Further, for benzenoid structures the observed empirical formulae limit the observed isomers to those which are nearly circular with high aromatic conjugation lengths for a given aromatic ring count. These results stand in contrast to recent reports that suggest higher aliphatic composition of primary particles.  相似文献   
998.
N‐glycosylation may affect the safety and efficacy of biopharmaceuticals and is thus monitored during manufacturing. Mass spectrometry of the intact protein is increasingly used to reveal co‐existing glycosylation variants. However, quantification of N‐glycoforms via this approach may be biased by single hexose residues as introduced by glycation or O‐glycosylation. Herein, we describe a simple strategy to reveal actual N‐glycoform abundances of therapeutic antibodies, involving experimental determination of glycation levels followed by computational elimination of the “hexosylation bias”. We show that actual N‐glycoform abundances may significantly deviate from initially determined values. Indeed, glycation may even obscure considerable differences in N‐glycosylation patterns of drug product batches. Our observations may thus have implications for biopharmaceutical quality control. Moreover, we solve an instance of the problem of isobaricity, which is fundamental to mass spectrometry.  相似文献   
999.
A multiply charged molecule expands the range of a mass window and is utilized as a precursor to provide rich sequence coverage; however, reflectron time-of-flight mass spectrometer has not been well applied to the product ion analysis of multiply charged precursor ions. Here, we demonstrate that the range of the mass-to-charge ratio of measurable product ions is limited in the cases of multiply charged precursor ions. We choose C6F6 as a model molecule to investigate the reactions of multiply charged molecular cations formed in intense femtosecond laser fields. Measurements of the time-of-flight spectrum of C6F6 by changing the potential applied to the reflectron, combined with simulation of the ion trajectory, can identify the species detected behind the reflectron as the neutral species and/or ions formed by the collisional charge transfer. Moreover, the metastable ion dissociations of doubly and triply charged C6F6 are identified. The detection of product ions in this manner can diminish interference by the precursor ion. Moreover, it does not need precursor ion separation before product ion analysis. These advantages would expand the capability of mass spectrometry to obtain information about metastable ion dissociation of multiply charged species.  相似文献   
1000.
Protonation at the formyl oxygen atom of benzaldehydes leading to the formation of carboxonium ions yields two distinct isomers, depending on the relative orientation of the proton either cis or trans with respect to the hydrogen atom on the adjacent carbon. In this context, the IR multiple photon dissociation (IRMPD) spectra of protonated ortho, meta, and para-hydroxybenzaldehydes ( OH−BZH+ ), delivered into the gas phase by electrospray ionization of hydro-alcoholic solutions, are reported in the 3200–3700 cm−1 spectral range. This range is characteristic of O−H stretching modes and thus able to differentiate cis and trans carboxonium isomers. Comparison between IRMPD spectra and DFT calculations at the B3LYP/6-311++G(2df2p) level suggests that for both p- OH−BZH+ and m- OH−BZH+ only cis conformers are present in the ion population analyzed. For o- OH−BZH+ , IRMPD spectroscopy points to a mixture comprising one trans and more than one cis conformers. The energy barrier for cis–trans isomerization calculated for each OH−BZH+ isomer is a measure of the degree of π-electron delocalization. Furthermore, IRMPD spectra of p- OH−BZH+ , m- OH−BZH+ and protonated phenol (this last used as reference) were recorded also in the fingerprint range. Both the observed C−O and O−H stretching vibrations appear to be a measure of π-electron delocalization in the ions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号