首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   408篇
  免费   24篇
  国内免费   73篇
化学   456篇
晶体学   9篇
力学   3篇
综合类   2篇
物理学   35篇
  2024年   1篇
  2023年   3篇
  2022年   12篇
  2021年   9篇
  2020年   9篇
  2019年   5篇
  2018年   11篇
  2017年   7篇
  2016年   13篇
  2015年   12篇
  2014年   14篇
  2013年   40篇
  2012年   13篇
  2011年   15篇
  2010年   16篇
  2009年   11篇
  2008年   22篇
  2007年   36篇
  2006年   26篇
  2005年   21篇
  2004年   24篇
  2003年   26篇
  2002年   15篇
  2001年   22篇
  2000年   20篇
  1999年   20篇
  1998年   9篇
  1997年   11篇
  1996年   9篇
  1995年   10篇
  1994年   10篇
  1993年   6篇
  1992年   7篇
  1991年   4篇
  1990年   4篇
  1989年   3篇
  1988年   2篇
  1987年   1篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1981年   1篇
排序方式: 共有505条查询结果,搜索用时 375 毫秒
41.
A microautoclave magic angle spinning NMR rotor is developed enabling in situ monitoring of solid–liquid–gas reactions at high temperatures and pressures. It is used in a kinetic and mechanistic study of the reactions of cyclohexanol on zeolite HBEA in 130 °C water. The 13C spectra show that dehydration of 1‐13C‐cyclohexanol occurs with significant migration of the hydroxy group in cyclohexanol and the double bond in cyclohexene with respect to the 13C label. A simplified kinetic model shows the E1‐type elimination fully accounts for the initial rates of 1‐13C‐cyclohexanol disappearance and the appearance of the differently labeled products, thus suggesting that the cyclohexyl cation undergoes a 1,2‐hydride shift competitive with rehydration and deprotonation. Concurrent with the dehydration, trace amounts of dicyclohexyl ether are observed, and in approaching equilibrium, a secondary product, cyclohexyl‐1‐cyclohexene is formed. Compared to phosphoric acid, HBEA is shown to be a more active catalyst exhibiting a dehydration rate that is 100‐fold faster per proton.  相似文献   
42.
Various cathinone‐derived designer drugs (CATs) have recently appeared on the drug market. This study examined the mechanism for the generation of dehydrated ions for CATs during electrospray ionization collision‐induced dissociation (ESI‐CID). The generation mechanism of dehydrated ions is dependent on the amine classification in the cathinone skeleton, which is used in the identification of CATs. The two hydrogen atoms eliminated during the dehydration of cathinone (primary amine) and methcathinone (secondary amine) were determined, and the reaction mechanism was elucidated through the deuterium labeling experiments. The hydrogen atom bonded to the amine nitrogen was eliminated with the proton added during ESI, in both of the tested compounds. This provided evidence that CATs with tertiary amine structures (such as dimethylcathinone and α‐pyrrolidinophenones [α‐PPs]) do not undergo dehydration. However, it was shown that the two major tertiary amine metabolites (1‐OH and 2″‐oxo) of CATs generate dehydrated ions in ESI‐CID. The dehydration mechanisms of the metabolites of α‐pyrrolidinobutiophenone (α‐PBP) belongs to α‐PPs were also investigated. Stable‐isotope labeling showed the dehydration of the 1‐OH metabolite following a simple mechanism where the hydroxy group was eliminated together with the proton added during ESI. In contrast, the dehydration mechanism of the 2″‐oxo metabolite involved hydrogen atoms in three or more locations along with the carbonyl group oxygen, indicating that dehydration occurred via multiple mechanisms likely including the rearrangement reaction of hydrogen atoms. These findings presented herein indicate that the dehydrated ions in ESI‐CID can be used for the structural identification of CATs.  相似文献   
43.
氧化铝的改性及其在合成气直接制二甲醚反应中的应用   总被引:7,自引:0,他引:7  
 采用浸渍法制备了经硼、磷和硫的含氧酸根阴离子改性的γ-Al2O3, 以其为甲醇脱水活性组分,与铜基甲醇合成活性组分CuO-ZnO-Al2O3组成双功能催化剂,并在连续流动加压固定床反应器上考察了催化剂对合成气直接制二甲醚反应的催化性能. 结果表明, SO2-4改性可以显著提高γ-Al2O3的甲醇脱水活性,从而提高产物中二甲醚的选择性和一氧化碳的转化率. 此外,还详细研究了SO2-4改性条件如SO2-4含量、焙烧温度及前驱物种类的影响. 结果表明,当SO2-4含量为10%, 焙烧温度为550 ℃时,二甲醚的选择性及一氧化碳的转化率最高; SO2-4前驱物的种类对其改性效果的影响很小.  相似文献   
44.
The influence of ultrasonic frequency (20 kHz) and glucose pretreatments either alone or in combination on the drying of sweet potato slices (3 mm) using a hot-air dryer at 60 °C was tested to study the kinetics modeling, phytochemicals, antioxidant activities, and functional and textural changes of the final dried product. The results indicated that total phenolic content and total flavonoid content were significantly higher in glucose-pretreated samples while antioxidant activities were higher in ultrasound- and glucose-pretreated samples. For vitamin C, much degradation occurred in the glucose-pretreated samples when compared with the other pretreated samples apart from the control. Enzymatic browning made a minor contribution to the ultrasound/glucose-pretreated samples, while no significant differences were noted in the glucose-pretreated samples. A modified Henderson and Pabis (MHP) model, followed by the two-term and Hii models, fitted best among the 15 selected mathematical models. Fourier Transform Infrared Spectroscopy (FTIR) analysis revealed the presence of glucose, phenols, and flavonols in all samples. Microstructural analysis confirmed the hardness (N) in the final glucose-pretreated samples due to glucose layers and less cell damage.  相似文献   
45.
Thomsonite with ideal chemical composition and with an ordered framework structure was synthesised hydrothermally from zeolite Na?A, which was ground to X-ray amorphous, with 0.05 mol dm?3 CaCl2 solution at 200°C. The dehydration behaviour of the prepared thomsonite was examined by TG-DTA. It was revealed that thomsonite lost most of zeolitic water below 450°C in three steps at about 180°, 340° and 390°C. The peak profiles of, the two higher-temperature endotherms were sharp and similar, and the weight loss at each step was approximately equal.  相似文献   
46.
The activity of Lewis (Nb2O5) and Br nsted (Amberlyst 70) acid catalysts for the cyclodehydration of xylose to furfural was studied. The nature of the acidity resulted in significant changes in the reaction mechanism. Lewis acid sites promote the formation of xylulose, while Br nsted acid sites are required to further dehydrate the sugar to furfural. Amberlyst 70 in water/toluene at 175 ℃ showed lower activity but gave a higher furfural yield. Using N2 as the stripping agent considerably improved the furfural yield and product purity in the stripped stream. Catalyst stability was also studied.  相似文献   
47.
Combined quantum mechanical calculations and classical molecular dynamics simulations were conducted to investigate the hydration properties of carboxybetaine zwitterion brushes with varying separation distances between the quaternary ammonium cation and carboxylic anion. The brushes consist of zwitterion trimers and are investigated to mimic interacting zwitterion chains grafted on a substrate as well as polymers with interacting zwitterion side chains. Our results show that the values of both positive and negative charges, their separation distances as well as chain interactions appear to play a critical role in the hydration properties of the zwitterions. The overall hydration property of these zwitterions is dictated by the competition between the strong hydration of the charged groups and the dehydration of the hydrocarbon chains. The strongest hydration occurs when the ? CH2? unit in the hydrocarbon chain reaches 6–8 for these trimers. Further increase in the hydrocarbon chain length to 10–14 leads to significant and sudden dehydration of the trimers. The water structure and the water residence time surrounding the zwitterions also demonstrate substantial alteration at this length scale. This hydrophilic‐to‐hydrophobic transition is induced by the hydrophobic interactions of the trimer chains. Our hydration results could explain the observed trend of the superiority of the methylated carbohydrates and poly(ethylene glycol) as antifouling materials compared to corresponding hydroxyl‐terminated compounds. © 2015 Wiley Periodicals, Inc.  相似文献   
48.
In recent years, an increasing interest in reducing sugar consumption has been observed and many studies are conducted on the use of polyols in the osmotic dehydration process to obtain candied or dried fruits. The studies in the literature have focused on the kinetics of the process as well as the basic physical properties. In the scientific literature, there is a lack of investigation of the influence of such polyol solutions such as sorbitol and mannitol used as osmotic substances during the osmotic dehydration process on the contents of bioactive components, including natural colourants. Thus, the aim of the study was to evaluate the impact of polyols (mannitol and sorbitol) in different concentrations on the process kinetics and on chosen physical (colour and structural changes) as well as chemical (sugars and polyol content, total anthocyanin content, total polyphenol content, vitamin C, antioxidant activity) properties of osmotic-dehydrated organic strawberries. Generally, the results showed that the best solution for osmotic dehydration is 30% or 40% sorbitol solutions, while mannitol solution is not recommended due to difficulties with preparing a high-concentration solution and its crystallization in the tissue. In the case of sorbitol, the changes of bioactive compounds, as well as colour change, were similar to the sucrose solution. However, the profile of the sugar changed significantly, in which sucrose, glucose, and fructose were reduced in organic strawberries and were partially replaced by polyols.  相似文献   
49.
A detailed exploration of the configurational and conformational space of chloro- and bromo-hydroxyformaldoximes, Xhfaox (X = Cl, Br) has been carried out with the aid of the B3LYP level of density functional theory, using the 6-31G(d,p) basis set. The most stable configuration in each series of the Clhfaox and Brhfaox conformers corresponds to the Z-s-cis, s-trans configuration, while the highest energy Z-(s-trans, s-cis) conformers were found at 7.0(7.6) and 6.0(6.6) kcal mol(-1), respectively, at the B3LYP(QCISD(T)) levels of theory. Saddle points were also located on the PES of the Clhfaox and Brhfaox compounds corresponding to Z-(s-cis, s-cis) conformers at 13.8(14.9) and 13.6(14.6) kcal mol(-1), respectively, at the B3LYP(QCISD(T)) levels. Upon dehydration Xhfaox could afford a number of isomeric CXNO species. The dehydration processes of Xhfaox are predicted to be endothermic, the computed heats of reactions found in the range of 20.5 to 86.2 kcal mol(-1) and 15.9 to 100.4 kcal mol(-1) at the B3LYP and QCISD(T) levels, respectively. The reaction pathways for the addition of water to halo-fulminates yielding the most stable Xhfaox conformers was predicted to be concerted with a single transition structure, but are asynchronous with activation barriers of 32.8 and 43.0 kcal mol(-1) for the chloro- and bromo-derivatives, respectively. The PES governing the isomerization reactions of the CXNO isomers have also been calculated, and possible isomerization pathways have been delineated. Upon dehydrohalogenation the Xhfaox conformers yield hydroxy-isocyanate or hydroxy-fulminate, the former being more stable by 31.8(18.8) kcal mol(-1) at the B3LYP(QCISD(T)) levels of theory. The reaction pathways for the addition of HX to hydroxy-isocyanate were predicted to be slightly exothermic, the heats of reactions being -3.2 and -5.5 kcal mol(-1), respectively, and have to surmount high activation barriers of 39.7 and 35.0 kcal mol(-1), respectively. Similarly, the addition of HX to hydroxy-fulminate was predicted to be much more exothermic, the heats of reactions being -34.7 and -37.3 kcal mol(-1), respectively, and have to surmount much lower activation barriers of only 10.5 and 7.5 kcal mol(-1) respectively, at the B3LYP level. Finally, calculated structures, relative stability, and bonding properties of all stationary points located on the PES of the systems and reactions studied are thoroughly discussed with respect to computed electronic properties.  相似文献   
50.
The thermal decomposition reactions of manganese(II) complexes with L-proline and 4-hydroxy- L-proline were studied. The Mn(II) proline complex loses the water molecule at 40–95°C and then, heated above 250°C it decomposes in several steps to manganese oxide. The most appropriate kinetic equations for dehydration process are the geometrical R2 or R3 ones. They give a value of activation energy, E of about 95 kJmol–1. The Mn(II) hydroxyproline complex loses the water molecules in two stages (70–110 and 110–230°C) and next it decomposes to manganese oxide in several steps. The R3 or D3 (three-dimensional diffusion) models are the most appropriate for the first stage of dehydration (E is about 155 kJ mol–1). The second step of dehydration is limited by D3 mechanism (E=52 kJ mol–1). This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号