首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8399篇
  免费   753篇
  国内免费   226篇
化学   9019篇
晶体学   25篇
力学   3篇
综合类   23篇
数学   3篇
物理学   305篇
  2024年   6篇
  2023年   87篇
  2022年   241篇
  2021年   222篇
  2020年   275篇
  2019年   214篇
  2018年   211篇
  2017年   186篇
  2016年   310篇
  2015年   300篇
  2014年   358篇
  2013年   682篇
  2012年   450篇
  2011年   423篇
  2010年   382篇
  2009年   428篇
  2008年   433篇
  2007年   503篇
  2006年   440篇
  2005年   440篇
  2004年   445篇
  2003年   351篇
  2002年   492篇
  2001年   180篇
  2000年   157篇
  1999年   124篇
  1998年   129篇
  1997年   118篇
  1996年   104篇
  1995年   103篇
  1994年   64篇
  1993年   68篇
  1992年   66篇
  1991年   53篇
  1990年   45篇
  1989年   34篇
  1988年   42篇
  1987年   29篇
  1986年   14篇
  1985年   20篇
  1984年   35篇
  1983年   13篇
  1982年   21篇
  1981年   15篇
  1980年   12篇
  1979年   19篇
  1978年   8篇
  1972年   5篇
  1969年   4篇
  1968年   3篇
排序方式: 共有9378条查询结果,搜索用时 31 毫秒
991.
992.
993.
994.
995.
The interactions of amino acids with inorganic surfaces are of interest for biologists and biotechnologists alike. However, the structural determinants of peptide–surface interactions have remained elusive, but are important for a structural understanding of the interactions of biomolecules with gold surfaces. Molecular dynamics simulations are a tool to analyze structures of amino acids on surfaces. However, such an approach is challenging due to lacking parameterization for many surfaces and the polarizability of metal surfaces. Herein, we report DFT calculations of amino acid fragments in vacuo and molecular dynamics simulations of the interaction of all amino acids with a gold(111) surface in explicit solvent, using the recently introduced polarizable gold force field GolP. We describe preferred orientations of the amino acids on the metal surface. We find that all amino acids preferably interact with the gold surface at least partially with their backbone, underlining an unfolding propensity of gold surfaces.  相似文献   
996.
We report a study on different ionization states and conformations of the bimolecular (Gly)2 system by means of quantum mechanical calculations. Optimized geometries for energy minima of the glycine dimer, as well as relative energies and free energies were computed as a function of the medium: gas phase, nonpolar polarizable solvent, and aqueous solution. The polarizable continuum model was employed to account for solvation effects. Energy calculations were done using the MP2/aug‐cc‐pVTZ and B3LYP/6‐311+G(2df,2p) methods on B3LYP/6‐31+G(d,p) optimized structures (some single‐point energy calculations were also done using the B3PW91 and PBE1KCIS methods). Ionized forms of the glycine dimer (either zwitterion–zwitterion or neutral–zwitterion) are predicted to exist in all media, in contrast to amino acid monomers. In aqueous solution, dimerization is an exergonic process (?4 kcal mol?1). Thus, according to our results, zwitterion–zwitterion Gly dimers might be abundant in supersaturated glycine aqueous solutions, a fact that has been connected with the structure of α‐glycine crystals but that remains controversial in the literature. Another noticeable result is that zwitterion–zwitterion interactions are substantially underestimated when computed using methods based on density functional theory. For comparison, some calculations for the dimer of the simplest chiral amino acid alanine were done as well and differences to the glycine dimer are discussed.  相似文献   
997.
998.
Two new series of Boc‐N‐α,δ‐/δ,α‐ and β,δ‐/δ,β‐hybrid peptides containing repeats of L ‐Ala‐δ5‐Caa/δ5‐Caa‐L ‐Ala and β3‐Caa‐δ5‐Caa/δ5‐Caa‐β3‐Caa (L ‐Ala = L ‐alanine, Caa = C‐linked carbo amino acid derived from D ‐xylose) have been differentiated by both positive and negative ion electrospray ionization (ESI) ion trap tandem mass spectrometry (MS/MS). MSn spectra of protonated isomeric peptides produce characteristic fragmentation involving the peptide backbone, the Boc‐group, and the side chain. The dipeptide positional isomers are differentiated by the collision‐induced dissociation (CID) of the protonated peptides. The loss of 2‐methylprop‐1‐ene is more pronounced for Boc‐NH‐L ‐Ala‐δ‐Caa‐OCH3 (1), whereas it is totally absent for its positional isomer Boc‐NH‐δ‐Caa‐L ‐Ala‐OCH3 (7), instead it shows significant loss of t‐butanol. On the other hand, second isomeric pair shows significant loss of t‐butanol and loss of acetone for Boc‐NH‐δ‐Caa‐β‐Caa‐OCH3 (18), whereas these are insignificant for its positional isomer Boc‐NH‐β‐Caa‐δ‐Caa‐OCH3 (13). The tetra‐ and hexapeptide positional isomers also show significant differences in MS2 and MS3 CID spectra. It is observed that ‘b’ ions are abundant when oxazolone structures are formed through five‐membered cyclic transition state and cyclization process for larger ‘b’ ions led to its insignificant abundance. However, b1+ ion is formed in case of δ,α‐dipeptide that may have a six‐membered substituted piperidone ion structure. Furthermore, ESI negative ion MS/MS has also been found to be useful for differentiating these isomeric peptide acids. Thus, the results of MS/MS of pairs of di‐, tetra‐, and hexapeptide positional isomers provide peptide sequencing information and distinguish the positional isomers. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
999.
Chiral discrimination of seven enantiomeric pairs of β‐3‐homo‐amino acids was studied by using the kinetic method and trimeric metal‐bound complexes, with natural and unnatural α‐amino acids as chiral reference compounds and divalent metal ions (Cu2+ and Ni2+) as the center ions. The β‐3‐homo‐amino acids were selected for this study because, first of all, chiral discrimination of β‐amino acids has not been extensively studied by mass spectrometry. Moreover, these β‐3‐homo‐amino acids studied have different aromatic side chains. Thus, the emphasis was to study the effect of the side chain (electron density of the phenyl ring, as well as the difference between phenyl and benzyl side chains) for the chiral discrimination. The results showed that by the proper choice of a metal ion and a chiral reference compound, all seven enantiomeric pairs of β‐3‐homo‐amino acids could be differentiated. Moreover, it was noted that the β‐3‐homo‐amino acids with benzyl side chains provided higher enantioselectivity than the corresponding phenyl ones. However, increasing or decreasing the electron density of the aromatic ring by different substituents in both the phenyl and benzyl side chains had practically no role for chiral discrimination of β‐3‐homo‐amino acids studied. When copper was used as the central metal, the phenyl side chain containing reference molecules (S)‐2‐amino‐2‐phenylacetic acid (L ‐Phg) and (S)‐2‐amino‐2‐(4‐hydroxyphenyl)‐acetic acid (L ‐4′‐OHPhg) gave rise to an additional copper‐reduced dimeric fragment ion, [CuI(ref)(A)]+. The inclusion of this ion improved noticeably the enantioselectivity values obtained. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
1000.
A two‐dimensional diagram is proposed, in which the carbon number of each formula is plotted against its nominal mass, to visualize large sets of molecular formula data that can be derived from data generated by ultrahigh‐resolution Fourier transform ion cyclotron resonance‐MS. In such a carbon versus mass (CvM) diagram, each formula (CcHhOo) is unambiguously described by c, its (nominal) mass and the parameter i = c + o. Calculations of chemically allowable formulas illustrate that organic molecules occupy only certain spaces in such a diagram. The extension of these spaces increases with molecular mass in x‐direction (hydrogenation) and y‐direction (oxygenation). The data sets of molecules determined in natural organic matter(NOM) occupy only a certain range of the allowable space. The intensity of the mass spectrometric signals can be included as the third dimension into a CvM diagram. Separate CvM diagrams can be plotted for NOM molecules that include different heteroatoms. The benefits of the CvM diagram are illustrated by application onto data sets of fulvic acids from riverine and marine origin, of secondary organic aerosol, including organosulfates and organonitrates, as well as of ozonation of fulvic acids. The CvM diagram is a useful tool to visualize the elemental regularities in NOM isolates as well as the differences between isolates. It may also be applicable to large sets of molecular formula data generated in other disciplines such as petroleum biogeochemistry or metabolomics. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号