首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2518篇
  免费   328篇
  国内免费   758篇
化学   3493篇
晶体学   3篇
力学   5篇
综合类   14篇
物理学   89篇
  2024年   12篇
  2023年   44篇
  2022年   73篇
  2021年   91篇
  2020年   144篇
  2019年   129篇
  2018年   103篇
  2017年   86篇
  2016年   126篇
  2015年   144篇
  2014年   164篇
  2013年   236篇
  2012年   167篇
  2011年   197篇
  2010年   122篇
  2009年   125篇
  2008年   157篇
  2007年   157篇
  2006年   172篇
  2005年   134篇
  2004年   130篇
  2003年   122篇
  2002年   179篇
  2001年   89篇
  2000年   70篇
  1999年   74篇
  1998年   55篇
  1997年   50篇
  1996年   62篇
  1995年   41篇
  1994年   28篇
  1993年   30篇
  1992年   28篇
  1991年   10篇
  1990年   13篇
  1989年   3篇
  1988年   9篇
  1987年   1篇
  1986年   1篇
  1985年   11篇
  1984年   7篇
  1983年   2篇
  1982年   2篇
  1979年   2篇
  1971年   1篇
  1970年   1篇
排序方式: 共有3604条查询结果,搜索用时 0 毫秒
991.
Summary Pt/SiO2 and Pt-Fe/SiO2 catalysts having a Pt loading ranging from 0.5 to 3.0 wt.% and a fixed amount of Fe in the bimetallic series, 1.0 wt.% have been prepared by the impregnation procedure, followed by calcinations and reduction in H2 flow at 773 K. The samples were characterized by N2 adsorption at 77 K, H2 chemisorption at 298 K, TEM, TPR and XPS. The hydrogenation of citral at 363 K and 8.3 bar over a series of Pt/SiO2 and Pt-Fe/SiO2 catalysts was studied. Thus, the selectivity towards the unsaturated alcohol (geraniol + nerol) decreases at high loads of monometallic Pt. An effect of polarization of the C=O bond due to the presence of Fe3+ species leads to catalysts active and highly selective to the hydrogenation of the carbonyl bond. Characterization results showed that Pt is present as Pto and Fe mainly asFe3+.  相似文献   
992.
IntroduCtionReCently,zcoliteZSM-48hasbeenspehesizedinapurelysolidsystemll1.Thismethedusedtosynthesizezcolitescangndlyincreasetheyieldofpnductsperunitvolume,simplifythepr0cedresanddecreasethecnvironmentalpolluti0n.ThisincreasestheacualPOssibilityofsynthesisofhigh-silicazcolitesinchemicalindustry.MoreOver,itisalsohelpfulforstUdyingthezeolitecrystalliZai0nmechanism.ItiswellknownthatthesamewneofzeolitessynthesizedindifferentsystemshasdifferentcatalyticpropertiesduetothechangesoftheirfinestruC…  相似文献   
993.
Polymer-stabilized platinum/ruthenium bimetallic colloids (Pt/Ru) were synthesized by polyol reduction with microwave irradiation and characterized by TEM and XPS. The colloidal nanoparticles have small and narrow size distributions. Catalytic performance of the Pt/Ru colloidal catalysts was investigated on the selective hydrogenation of crontonaldehyde (CRAL). A suitable amount of the added metal ions and base can improve the selectivity of CRAL to crotylalcohol (CROL) remarkably. The catalytic activity and the selectivity are dependent on the compositions of bimetallic colloids. Thereinto, PVP-stabilized 9Pt/1Ru colloid with a molar ratio of metals Pt:Ru = 9:1 shows the highest catalytic selectivity 77.3% to CROL at 333 K under 4.0 MPa of hydrogen.  相似文献   
994.
The chiral Ir catalytic system generated in situ from iridium hydride complex and chiral diaminodiphosphine ligand was employed in asymmetric transfer hydrogenation of aromatic ketones to give the corresponding optically active alcohols, with up to 99% ee in high yield were obtained even when the substrate-to-catalyst molar ratio reached 10000:1.  相似文献   
995.
The activity and selectivity of 10 % Co/support and 10 % Ni/support catalysts (where the support is A12O3, SiO2, C) in the synthesis of hydrocarbons from CO2 and H2 were studied. The extent of conversion of the starting mixture and the yield of methane were shown to depend on the composition of the catalytic system. Cobalt catalysts with various types of carbons as supports are the most active. They permit the synthesis of methane in yields up to 70 % of the theoretical value.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 482–484, March, 1993.  相似文献   
996.
Reaction of [RhCl(PPh3)2]2 with parahydrogen revealed that the binuclear dihydride [Rh(H)2(PPh3)2mu-Cl)2Rh(PPh3)2] and the tetrahydride complex [Rh(H)2(PPh3)2(mu-Cl)]2 are readily formed. While magnetisation transfer from free H2 into both the hydride resonances of the tetrahydride and [Rh(H)2Cl(PPh3)3] is observable, neither transfer into [Rh(H)2(PPh3)2(mu-Cl)2Rh(PPh3)2] nor transfer between the two binuclear complexes is seen. Consequently [Rh(H)2(PPh3)2(mu-Cl)]2 and [Rh(H)2(PPh3)2(mu-Cl)2Rh(PPh3)2] are not connected on the NMR timescale by simple elimination or addition of H2. The rapid exchange of free H2 into the tetrahydride proceeds via reversible halide bridge rupture and the formation of [Rh(H)2(PPh3)2(mu-Cl)RhCl(H)2(PPh3)2]. When these reactions are examined in CD2Cl2, the formation of the solvent complex [Rh(H)2(PPh3)2(mu-Cl)2Rh(CD2Cl2)(PPh3)] and the deactivation products [Rh(Cl)(H)PPh3)2(mu-Cl)(mu-H)Rh(Cl)(H)PPh3)2] and [Rh(Cl)(H)(CD2Cl2)(PPh3)(mu-Cl)(mu-H)Rh(Cl)(H)PPh3)2] is indicated. In the presence of an alkene and parahydrogen, signals corresponding to binuclear complexes of the type [Rh(H)2(PPh3)2(mu-Cl)(2)(Rh)(PPh3)(alkene)] are detected. These complexes undergo intramolecular hydride interchange in a process that is independent of the concentration of styrene and catalyst and involves halide bridge rupture, followed by rotation about the remaining Rh-Cl bridge, and bridge re-establishment. This process is facilitated by electron rich alkenes. Magnetisation transfer from the hydride ligands of these complexes into the alkyl group of the hydrogenation product is also observed. Hydrogenation is proposed to proceed via binuclear complex fragmentation and trapping of the resultant intermediate [RhCl(H)2PPh3)2] by the alkene. Studies on a number of other binuclear dihydride complexes including [(H)(Cl)Rh(PMe3)2(mu-H)(mu-Cl)Rh(CO)(PMe3)], [(H)2Rh(PMe3)2(mu-Cl)2Rh(CO)(PMe3)] and [HRh(PMe3)2(mu-H)(mu-Cl)2Rh(CO)(PMe3)] reveal that such species are able to play a similar role in hydrogenation catalysis. When the analogous iodide complexes [RhIPPh3)2]2 and [RhI(PPh3)3] are examined, [Rh(H)2(PPh3)2(mu-I)2Rh(PPh3)2], [Rh(H)2(PPh3)2(mu-I)]2 and [Rh(H)2I(PPh3)3] are observed in addition to the corresponding binuclear alkene-dihydride products. The higher initial activity of these precursors is offset by the formation of the trirhodium phosphide bridged deactivation product, [[(H)(PPh3)Rh(mu-H)(mu-I)(mu-PPh2)Rh(H)(PPh3)](mu-I)2Rh(H)2PPh3)2]  相似文献   
997.
Poly(benzyl malate) (PBM), together with its derivatives, have been studied as nanocarriers for biomedical applications due to their superior biocompatibility and biodegradability. The acquisition of PBM is primarily from chemical routes, which could offer polymer-controlled molecular weight and a unique controllable morphology. Nowadays, the frequently used synthesis from L-aspartic acid gives an overall yield of 4.5%. In this work, a novel synthesis route with malic acid as the initiator was successfully designed and optimized, increasing the reaction yield up to 31.2%. Furthermore, a crystalline form of PBM (PBM-2) that polymerized from high optical purity benzyl-β-malolactonate (MLABn) was discovered during the optimization process. X-ray diffraction (XRD) patterns revealed that the crystalline PBM-2 had obvious diffraction peaks, demonstrating that its internal atoms were arranged in a more orderly manner and were different from the amorphous PBM-1 prepared from the racemic MLABn. The differential scanning calorimetry (DSC) curves and thermogravimetric curves elucidated the diverse thermal behaviors between PBM-1 and PBM-2. The degradation curves and scanning electron microscopy (SEM) images further demonstrated the biodegradability of PBM, which have different crystal structures. The hardness of PBM-2 implied the potential application in bone regeneration, while it resulted in the reduction of solubility when compared with PBM-1, which made it difficult to be dissolved and hydrogenated. The solution was therefore heated up to 75 °C to achieve benzyl deprotection, and a series of partially hydrogenated PBM was sequent prepared. Their optimal hydrogenation rates were screened to determine the optimal conditions for the formation of micelles suitable for drug-carrier applications. In summary, the synthesis route from malic acid facilitated the production of PBM for a shorter time and with a higher yield. The biodegradability, biosafety, mechanical properties, and adjustable hydrogenation widen the application of PBM with tunable properties as drug carriers.  相似文献   
998.
No matter through asymmetric reduction of ketones or kinetic resolution of secondary alcohols, enantioselective synthesis of the corresponding secondary alcohols is challenging when the two groups attached to the prochiral or chiral centers are spatially or electronically similar. For examples, dialkyl (sp3 vs. sp3), diaryl (sp2 vs. sp2), and aryl-alkenyl (sp2 vs. sp2) alcohols are difficult to produce with high enantioselectivities. By exploiting our recently developed Ru-catalysts of minimal stereogenicity, we reported herein a highly efficient kinetic resolution of aryl-alkenyl alcohols through hydrogen transfer. This method enabled such versatile chiral building blocks for organic synthesis as allylic alcohols, to be readily accessed with excellent enantiomeric excesses at practically useful conversions.  相似文献   
999.
Hydrogenation of Aromatic Nitriles on the Fe3(CO)9 Cluster The μ3-nitrile bridged clusters Fe3(CO)932-N≡CR) ( 3 , R = phenyl, p-tolyl, p-anisyl) consume hydrogen upon heating in solution with formation of the acimidoyl- and the alkylideneimido-bridged clusters HFe3(CO)932-HN=CR) ( 1 ) and HFe3(CO)932-N=CHR) ( 2 ). These can be obtained in a better way by successive H+ and H addition with NaBH4 and H3PO4. HFe3(CO)932-N=CHR) ( 2 ) adds P(OMe)3 with concomitant hydrogen migration to form Fe3(CO)9P(OMe)331-N–CH2R) ( 6 ). The phosphite-substituted cluster Fe3(CO)8P(OMe)332-N≡CPh) ( 5 a ) on the other hand is converted by the H+/H addition to the products HFe3(CO)8P(OMe)332-HN=CPh) ( 7 a ) and HFe3(CO)8P(OMe)332-N=CHPh) ( 8 a ).  相似文献   
1000.
多孔Pd/α-Al2O3 活性膜上 1,5-环辛二烯选择加氢   总被引:1,自引:0,他引:1  
周永华  叶红齐 《催化学报》2007,28(8):715-719
利用微乳液及浸渍技术制备了多孔Pd/α-Al2O3催化活性膜.利用透射电镜、扫描电镜和X射线衍射对微乳液中及α-Al2O3陶瓷膜孔结构中纳米Pd颗粒的形貌和分布进行了表征.分析结果表明,通过浸渍技术,微乳液中的纳米Pd颗粒以几百纳米大小的晶体形态均匀负载于陶瓷膜孔中.在"催化接触器"型膜反应器中,以1,5-环辛二烯催化加氢为模型反应,考察了多孔Pd/α-Al2O3膜的活性与选择性,并与Pd-聚丙烯酸(PAA)有机催化膜反应器、悬浮床反应器和固定床反应器中的催化性能进行了比较.结果表明,Pd/α-Al2O3膜反应器的催化活性与目的产物1-环辛烯的选择性远高于Pd-PAA有机膜反应器和固定床反应器.Pd/α-Al2O3膜反应器在强化传质和消除孔内扩散方面效果显著,这与Pd在陶瓷膜孔中的分布及反应物在膜反应器中的高速流动有关.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号