首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1206篇
  免费   39篇
  国内免费   13篇
化学   557篇
力学   15篇
综合类   21篇
数学   485篇
物理学   180篇
  2023年   34篇
  2022年   93篇
  2021年   87篇
  2020年   101篇
  2019年   106篇
  2018年   68篇
  2017年   63篇
  2016年   93篇
  2015年   70篇
  2014年   42篇
  2013年   113篇
  2012年   29篇
  2011年   38篇
  2010年   22篇
  2009年   25篇
  2008年   22篇
  2007年   35篇
  2006年   17篇
  2005年   32篇
  2004年   28篇
  2003年   18篇
  2002年   34篇
  2001年   20篇
  2000年   6篇
  1999年   10篇
  1998年   2篇
  1997年   4篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   5篇
  1992年   5篇
  1991年   1篇
  1989年   2篇
  1988年   1篇
  1986年   23篇
  1985年   1篇
  1979年   3篇
  1972年   1篇
排序方式: 共有1258条查询结果,搜索用时 62 毫秒
141.
Complementing the aims of problem‐based inquiry, a pedagogical approach called design thinking (DT) has students grapple with issues that require a creative redefinition and reimagining of solutions akin to professional skills of designers, who consider conflicting priorities and complex negotiations to arrive at a solution to an ill‐defined problem. This article aims to synthesize the limited existing literature on the use of DT in the K–12 classroom, share two exemplars of DT in action in Grades 3–5 so that science, technology, engineering, arts, and mathematics (STEAM) educators, teacher educators, researchers, and other stakeholders can visualize how it can take shape in the elementary classroom, followed by concluding remarks on DT. The DT framework provides an exciting avenue for teaching more than simply the content areas of STEAM, it provides a vehicle through which a true transdisciplinary learning experience can occur—where students are passionately invested in solving problems as they strive to make the world a better place.  相似文献   
142.
Mathematical modeling has been highlighted recently as Common Core State Standards for Mathematics (CCSSM) included Model with Mathematics as one of the Standards for Mathematical Practices (SMP) and a modeling strand in the high school standards. This common aspect of standards across most states in the United States intended by CCSSM authors and policy makers seems to mitigate the diverse notions of mathematical modeling. When we observed secondary mathematics preservice teachers (M‐PSTs) who learned about the SMP and used CCSSM modeling standards to plan and enact lessons, however, we noted differences in their interpretations and enactments of the standards, despite their attendance in the same course sections during a teacher preparation program. This result led us to investigate the ways the M‐PSTs understood modeling standards, which could provide insights into better preparing teachers to teach mathematical modeling. We present the contrasting ways in which M‐PSTs presented modeling related to their conceptions of mathematical modeling, choices of problems, and enactments over an academic year, connecting their practices to extant research. We consider this teaching and research experience as an opportunity to make significant changes in our instruction that may result in our students enhanced implementation of mathematical modeling.  相似文献   
143.
The study was situated in a National Science Foundation supported Math Science Partnership between a private university and an urban school district. This study sought to understand the decision‐making process of elementary teachers as they implement an integrated science, technology, engineering, and mathematics (STEM) curriculum in their classrooms and the interactions that occur between the teachers and curriculum during that process. This qualitative study utilized a comparative case study approach to understanding the decision‐making process of three elementary teachers enacting the same lesson. Analysis of the interactions revealed that the teachers' perceptions of student ability, their pedagogical design capacity, and time were influences that impacted implementation. These findings have implications for STEM‐focused professional development of elementary teachers.  相似文献   
144.
Body‐based activities have the potential to support mathematics learning, but we know little about the impact they have in the classroom. This study compares high school geometry students learning through either body‐based or analogous non‐body‐based activities over the course of a two‐week unit on similarity. Pre‐ and post‐tests revealed that while students in both conditions showed gains in content area comprehension over the course of the study, the body‐based condition showed significantly greater gains. Further, there were differences in the language students used to describe the learning activities at the end of the unit that may have contributed to the differences in learning gains. The students in the body‐based condition included more mathematical and nonmathematical details in their recollections. Additionally, students in the body‐based condition were more likely to recall their experiences from a first‐person perspective, while students in the control condition were more likely to use a third‐person perspective.  相似文献   
145.
Problem solving has long been a priority in mathematics education, and the first Common Core mathematical practice (SMP1) focuses on this priority through the language of “Make sense of problems and persevere in solving them.” We present findings from a survey about how prospective elementary teachers' (PTs) make sense of potential difficulties with fostering SMP1. Findings suggested that PTs' common anticipated difficulties relate to planning a solution pathway and self monitoring whether the solution makes sense. Moreover, a third of PTs disclosed that their anticipated difficulties are linked to their own personal struggles with aspects of SMP1. An alternative interpretation of SMP1 surfaced in which a small number of PTs described SMP1 as necessitating that a teacher teach multiple solution methods to students, instead of engaging students in productive struggle to develop their own strategies. We present a framework illustrating the connections between SMP 1 and Pólya's problem solving phases, and we discuss how these findings connect to and build on previous research of PTs' experiences with problem solving. We offer implications for the targeted support needed in teacher preparation programs to address these struggles, to prevent them from being replicated in their students.  相似文献   
146.
Slope is a fundamental mathematics concept in middle and high school that transcends to the university level. An understanding of slope is needed at the university level since slope plays an important role in understanding problems involving variation and change. In this study Mexican curricula documents were examined to determine which conceptualizations of slope are addressed in the intended mathematics curriculum. To explain the results, we use conceptualizations of slope identified in previous research. Our findings reveal that, to a certain extent, the conceptualizations proposed in the Mexican intended mathematics curriculum differ slightly in terms of the emphasis and timing of instruction from what others have identified in the U.S., with slope as a geometric ratio receiving less emphasis in the Mexican curriculum. There was also noted discontinuity within the Mexican curriculum in introducing slope in grade 9 and subsequently introducing of linear functions in grade 10 without explicit mention of slope. Suggestions are made for future studies, both to consider the conceptualizations of slope promoted in the Mexican textbooks and the impact they have in classroom instruction and student learning of slope.  相似文献   
147.
This article presents a large-scale longitudinal study of hundreds of students across the state of Kentucky that participated in a dual-focus mathematics intervention initiative when they were in the third grade. Rather than an exclusive focus on intervention, this initiative focused on both (i) high quality pull-out intervention and (ii) coherence between pull-out intervention and classroom instruction. The study found that over half of the third grade intervention students that participated in this initiative were classified as “novice” (the lowest possible performance category) on state standardized mathematics assessments at the end of the third grade. However, over the course of the following four years, the novice reduction rate of these students was significantly (p < .01) greater than other novices in Kentucky that did not participate in the initiative. These findings indicate that when implementing intervention initiatives to help students that are struggling with mathematics, it may be important to establish coherence between pull-out intervention and classroom instruction. The long term impact of this approach among traditionally underrepresented minorities suggest that this publication may provide insight into important equity issues where long-term analyses may sometimes be needed to capture the full impact of intervention initiatives.  相似文献   
148.
Integrating engineering into the K-12 science curriculum continues to be a focus in national reform efforts in science education. Although there is an increasing interest in research in and practice of integrating engineering in K-12 science education, to date only a few studies have focused on the development of an assessment tool to measure students’ understanding of engineering design. Most of the existing measures focus only on knowledge and understanding of engineering design concepts using multiple-choice items with the exception of the mixed-format Engineering Concept Assessment (ECA). Also, advanced measurement models are lacking application in the testing of such mixed-format assessments in science education. This study applied many-faceted Rasch measurement to the modified ECA for eighth-grade (ECA/M8) and a newly constructed rubric applied by five judges across 497 eighth-grade students’ responses after experiencing an integrated learning unit on the engineering design process. The results supported the fit of the items and rubric rating scales to the Rasch specifications. Recommendations are made for item wording, and further reliability and validity testing of the ECA/M8, and use of the ECA/M8 in science education and research.  相似文献   
149.
With the recent national emphasis on preparing children for future careers in science, technology, engineering, and mathematics, K-12 teachers are being called upon to include engineering in their instruction. This study explores the impacts of a summer professional development (PD) program focused on the engineering applications of mathematics and science on in-service K-12 teachers' (a) personal engineering efficacy, (b) engineering teaching efficacy, and (c) perceived barriers to teaching engineering. This quantitative study revealed that a single engineering-focused PD could increase teachers' personal engineering efficacy and engineering teaching efficacy and reduce particular perceived barriers to teaching engineering. No differences existed in pre- to post workshop assessment scores based on grade level taught, gender, or years of teaching experiences. However, pre- to post workshop assessment differences existed between participants depending on the discipline they taught and wether or not they had previously used engineering activities in their classrooms. These findings suggest that a single engineering PD can have significant impacts on in-service teachers' personal engineering efficacy, engineering teaching efficacy, and perceived barriers to teaching engineering, but a one-size-fits-all approach to such PD is not equally effective for all participants.  相似文献   
150.
Special education and mathematics education are becoming increasingly intertwined in inclusive classrooms. However, research and practice in these two fields are not always aligned. We discuss, in the context of extant research on pedagogical theory, concepts of access, and the findings of an exploratory study, how these two education sub-fields view teacher expertise. Teacher educators (from math and special education) were asked to rank the importance of different types of expertise for effectively posing purposeful mathematical questions. The groups differed significantly in their rankings of the importance of knowing individual students and general teaching experience. There were also notable differences between the groups’ rankings of the importance of knowing the needs of students with disabilities and mathematical content knowledge. The possible reasons for this are discussed, along with suggestions for improving professional collaboration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号