首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   331篇
  免费   91篇
  国内免费   5篇
化学   300篇
力学   1篇
综合类   6篇
数学   17篇
物理学   103篇
  2024年   1篇
  2023年   4篇
  2022年   7篇
  2021年   11篇
  2020年   23篇
  2019年   17篇
  2018年   18篇
  2017年   11篇
  2016年   19篇
  2015年   26篇
  2014年   26篇
  2013年   29篇
  2012年   20篇
  2011年   17篇
  2010年   33篇
  2009年   16篇
  2008年   24篇
  2007年   19篇
  2006年   17篇
  2005年   20篇
  2004年   15篇
  2003年   4篇
  2002年   11篇
  2001年   5篇
  2000年   4篇
  1999年   3篇
  1998年   3篇
  1997年   3篇
  1996年   12篇
  1995年   4篇
  1994年   2篇
  1992年   2篇
  1991年   1篇
排序方式: 共有427条查询结果,搜索用时 15 毫秒
31.
Icosahedral metallacarboranes are θ-shaped anionic molecules in which two icosahedra share one vertex that is a metal center. The most remarkable of these compounds is the anionic cobalt-based metallacarborane [Co(C2B9H11)2], whose oxidation-reduction processes occur via an outer sphere electron process. This, along with its low density negative charge, makes [Co(C2B9H11)2] very appealing to participate in electron-transfer processes. In this work, [Co(C2B9H11)2] is tethered to a perylenediimide dye to produce the first examples of switchable luminescent molecules and materials based on metallacarboranes. In particular, the electronic communication of [Co(C2B9H11)2] with the appended chromophore unit in these compounds can be regulated upon application of redox stimuli, which allows the reversible modulation of the emitted fluorescence. As such, they behave as electrochemically-controlled fluorescent molecular switches in solution, which surpass the performance of previous systems based on conjugates of perylendiimides with ferrocene. Remarkably, they can form gels by treatment with appropriate mixtures of organic solvents, which result from the self-assembly of the cobaltabisdicarbollide-perylendiimide conjugates into 1D nanostructures. The interplay between dye π-stacking and metallacarborane electronic and steric interactions ultimately governs the supramolecular arrangement in these materials, which for one of the compounds prepared allows preserving the luminescent behavior in the gel state.  相似文献   
32.
WavePacket is an open-source program package for numerical simulations in quantum dynamics. Building on the previous Part I (Schmidt and Lorenz, Comput. Phys. Commun. 2017, 213, 223] and Part II (Schmidt and Hartmann, Comput. Phys. Commun. 2018, 228, 229] which dealt with quantum dynamics of closed and open systems, respectively, the present Part III adds fully classical and mixed quantum-classical propagation techniques to WavePacket. There classical phase-space densities are sampled by trajectories which follow (diabatic or adiabatic) potential energy surfaces. In the vicinity of (genuine or avoided) intersections of those surfaces, trajectories may switch between them. To model these transitions, two classes of stochastic algorithms have been implemented: (1) Tully's fewest switches surface hopping and (2) Landau–Zener-based single switch surface hopping. The latter one offers the advantage of being based on adiabatic energy gaps only, thus not requiring nonadiabatic coupling information any more. The present work describes the MATLAB version of WavePacket 6.1.0, which is essentially an object-oriented rewrite of previous versions, allowing to perform fully classical, quantum-classical and quantum-mechanical simulations on an equal footing, that is, for the same physical system described by the same WavePacket input. The software package is hosted and further developed at the Sourceforge platform, where also extensive Wiki-documentation as well as numerous worked-out demonstration examples with animated graphics are available. © 2019 Wiley Periodicals, Inc.  相似文献   
33.
A new photochromic bisthienylethene system (BTE? NAFc) is reported in which the ferrocene unit (Fc) is incorporated into a naphthalimide chromophore as the central ethene bridging unit. The incorporated Fc unit in the photochromic system of BTE? NAFc has several effects on optical properties, such as fluorescence‐modulation through photoinduced electron transfer (PET), a decrease in the photochromic cyclization quantum yield, and a selective two‐step oxidation process. The ability to drive ring‐opening and ring‐closing reactions with a secondary redox‐modulation provides increased functionality to the photochromic system. Based on these meaningful photo‐ and redox‐modulation properties, five unprecedented multi‐addressable states (BTE? NAFc, BTE? NAFc+, c‐BTE? NAFc, c‐BTE? NAFc+, and BTE+? NAFc+) and gated photochromism are successfully obtained within the unimolecular BTE platform, thus providing deeper insight into photochromic systems as multifunctional outputs.  相似文献   
34.
Three-component molecular systems (redox active subunit)-spacer-(light-emitting fragment) can operate as fluorescence switches, following the alternate addition of an oxidizing agent and a reducing agent (or the adjustment of the potential of the working electrode in an electrolysis experiment). The redox active subunit typically consists of a metal centred redox couple (M(n+1)+/Mn+), encircled by a macrocyclic receptor, and switching efficiency requires that one of the two oxidation states quenches the proximate fluorophore and the other does not. Four ON/OFF systems, based on either the CuII/CuI or NiIII/NiII couple, will be discussed. The nature of the quenching process responsible for the OFF state, either electron transfer or energy transfer, is related to the length and to the flexibility-rigidity of the spacer.  相似文献   
35.
An azamacrocyclic ligand (L) containing two anthracene (AN) fragments connected through two triethylenetetramine bridges has been synthesized, in which each of the bridges can coordinate with one metal cation. The effects of pH and metal cations (Zn2+ and Cd2+) on the emission properties of L were studied in water. Without metal cations, L does not show any emission at basic pH values. The addition of Zn2+ leads to the production of excimer emission, which is due to a static excimer formed by direct excitation of the intramolecular ground-state dimer of the bipolar AN fragments that approach each other by Zn2+ binding. In contrast, Cd2+ addition does not result in excimer emission because the Cd2+-AN pi complex, formed by donation of a pi electron of the AN fragments to the adjacent Cd2+, suppresses pi-stacking interactions of the AN fragments. The most notable feature is the appearance of excimer emission controlled by the input sequence of metal cations: Zn2+-->Cd2+ sequential addition (each one equivalent) allows excimer emission, whereas the reverse sequence (Cd2+-->Zn2+) does not. In the Zn2+-->Cd2+ sequence, Cd2+ coordination is structurally restricted by the first Zn2+ coordination with the other polyamine bridge, leading to the formation of a weak Cd2+-AN pi complex. In contrast, for the reverse sequence, the first Cd2+ coordination forms a stable Cd2+-AN pi complex, which is not weakened by sequential Zn2+ coordination, resulting in no excimer emission.  相似文献   
36.
The exponential proliferation of data during the information age has required the continuous exploration of novel storage paradigms, materials, and devices with increasing data density. As a step toward the ultimate limits in data density, the development of an electrically controllable single-molecule memristive element is reported. In this device, digital information is encoded through switching between two isomer states by applying a voltage signal to the molecular junction, and the information is read out by monitoring the electrical conductance of each isomer. The two states are cycled using an electrically controllable local-heating mechanism for the forward reaction and catalyzed by a single charge-transfer process for the reverse switching. This single-molecule device can be modulated in situ, is fully reversible, and does not display stochastic switching. The IV curves of this single-molecule system also exhibit memristive character. These features suggest a new approach for the development of molecular switching systems and storage-class memories.  相似文献   
37.
Reversibly switching the light absorption of organic molecules by redox processes is of interest for applications in sensors, light harvesting, smart materials, and medical diagnostics. This work presents a symmetrical benzothiadiazole (BTD) derivative with a high fluorescence quantum yield in solution and in the crystalline state and shows by spectroelectrochemical analysis that reversible switching of UV absorption in the neutral state, to broadband Vis/NIR absorption in the 1st oxidized state, to sharp band Vis absorption in the 2nd oxidized state, is possible. For the one-electron oxidized species, formation of a delocalized radical is confirmed by electron paramagnetic resonance spectroelectrochemistry. Furthermore, our results reveal an increasing quinoidal distortion upon the 1st and 2nd oxidation, which can be used as the leitmotif for the development of BTD based redox switches.  相似文献   
38.
A series of photochromic derivatives based on the trans‐10b,10c‐dimethyl‐10b,10c‐dihydropyrene (DHP, “closed form”) skeleton has been synthesized and their photoisomerization leading to the corresponding cyclophanediene (CPD, “open form”) isomers has been investigated by UV/Vis and 1H NMR spectroscopies. Substitution of the DHP core with electron‐withdrawing pyridinium groups was found to have major effects on the photoisomerization efficiency, the most remarkable examples being to enhance the quantum yield of the opening reaction and to allow fast and quantitative conversions at much lower radiant energies. This effect was rationalized by theoretical calculations. We also show that the reverse reaction, that is, going from the open form to the closed form, can be electrochemically triggered by oxidation of the CPD unit and that the photo‐opening properties of pyridine‐substituted DHPs can be efficiently tuned by protonation, the system behaving as a multi‐addressable molecular switch. These multi‐addressable photochromes show promise for the development of responsive materials.  相似文献   
39.
Electronic circular dichroism and circularly polarized luminescence acid/base switching activity has been demonstrated in helicene‐bipyridine proligand 1 a and in its “rollover” cycloplatinated derivative 2 a . Whereas proligand 1 a displays a strong bathochromic shift (>160 nm) of the nonpolarized and circularly polarized luminescence upon protonation, complex 2 a displays slightly stronger emission. This strikingly different behavior between singlet emission in the organic helicene and triplet emission in the organometallic derivative has been rationalized by using quantum‐chemical calculations. The very large bathochromic shift of the emission observed upon protonation of azahelicene‐bipyridine 1 a has been attributed to the decrease in aromaticity (promoting a charge‐transfer‐type transition rather than a π–π* transition) as well as an increase in the HOMO–LUMO character of the transition and stabilization of the LUMO level upon protonation.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号