全文获取类型
收费全文 | 530篇 |
免费 | 26篇 |
国内免费 | 40篇 |
专业分类
化学 | 487篇 |
晶体学 | 4篇 |
力学 | 5篇 |
综合类 | 36篇 |
数学 | 15篇 |
物理学 | 49篇 |
出版年
2024年 | 9篇 |
2023年 | 12篇 |
2022年 | 47篇 |
2021年 | 56篇 |
2020年 | 31篇 |
2019年 | 24篇 |
2018年 | 17篇 |
2017年 | 26篇 |
2016年 | 17篇 |
2015年 | 19篇 |
2014年 | 18篇 |
2013年 | 34篇 |
2012年 | 34篇 |
2011年 | 27篇 |
2010年 | 17篇 |
2009年 | 23篇 |
2008年 | 29篇 |
2007年 | 25篇 |
2006年 | 27篇 |
2005年 | 17篇 |
2004年 | 16篇 |
2003年 | 18篇 |
2002年 | 15篇 |
2001年 | 3篇 |
2000年 | 7篇 |
1999年 | 10篇 |
1998年 | 4篇 |
1997年 | 3篇 |
1996年 | 1篇 |
1995年 | 2篇 |
1994年 | 2篇 |
1993年 | 2篇 |
1992年 | 1篇 |
1991年 | 2篇 |
1983年 | 1篇 |
排序方式: 共有596条查询结果,搜索用时 93 毫秒
41.
Alice Ferreira Daniel Figueiredo Francisca Ferreira Belina Ribeiro Alberto Reis Teresa Lopes da Silva Luisa Gouveia 《Molecules (Basel, Switzerland)》2022,27(7)
Microalgae have almost unlimited applications due to their versatility and robustness to grow in different environmental conditions, their biodiversity and variety of valuable bioactive compounds. Wastewater can be used as a low-cost and readily available medium for microalgae, while the latter removes the pollutants to produce clean water. Nevertheless, since the most valuable metabolites are mainly located inside the microalga cell, their release implies rupturing the cell wall. In this study, Tetradesmus obliquus grown in 5% piggery effluent was disrupted using high-pressure homogenization (HPH). Effects of HPH pressure (100, 300, and 600 bar) and cycles (1, 2 and 3) were tested on the membrane integrity and evaluated using flow cytometry and microscopy. In addition, wheat seed germination trials were carried out using the biomass at different conditions. Increased HPH pressure or number of cycles led to more cell disruption (75% at 600 bar and 3 cycles). However, the highest increase in wheat germination and growth (40–45%) was observed at the lowest pressure (100 bar), where only 46% of the microalga cells were permeabilised, but not disrupted. Non-treated T. obliquus cultures also revealed an enhancing effect on root and shoot length (up to 40%). The filtrate of the initial culture also promoted shoot development compared to water (21%), reinforcing the full use of all the process fractions. Thus, piggery wastewater can be used to produce microalgae biomass, and mild HPH conditions can promote cell permeabilization to release sufficient amounts of bioactive compounds with the ability to enhance plant germination and growth, converting an economic and environmental concern into environmentally sustainable applications. 相似文献
42.
The presence of heavy metals in water bodies is linked to the increasing number of industries and populations. This has serious consequences for the quality of human health and the environment. In accordance with this issue, water and wastewater treatment technologies including ion exchange, chemical extraction, and hydrolysis should be conducted as a first water purification stage. However, the sequestration of these toxic substances tends to be expensive, especially for large scale treatment methods that require tedious control and have limited efficiency. Therefore, adsorption methods using adsorbents derived from biomass represent a promising alternative due to their great efficiency and abundance. Algal and seaweed biomass has appeared as a sustainable solution for environmentally friendly adsorbent production. This review further discusses recent developments in the use of algal and seaweed biomass as potential sorbent for heavy metal bioremediation. In addition, relevant aspects like metal toxicity, adsorption mechanism, and parameters affecting the completion of adsorption process are also highlighted. Overall, the critical conclusion drawn is that algae and seaweed biomass can be used to sustainably eliminate heavy metals from wastewater. 相似文献
43.
Giuseppe Cirillo Manuela Curcio Lorenzo Francesco Madeo Francesca Iemma Giovanni De Filpo Silke Hampel Fiore Pasquale Nicoletta 《Molecules (Basel, Switzerland)》2021,26(22)
The performance of Carbon Nanotubes hybrid hydrogels for environmental remediation was investigated using Methylene Blue (MB), Rhodamine B (RD), and Bengal Rose (BR) as model contaminating dyes. An acrylate hydrogel network with incorporated CNT was synthesized by photo-polymerization without any preliminary derivatization of CNT surface. Thermodynamics, isothermal and kinetic studies showed favorable sorption processes with the application of an external 12 V electric field found to be able to influence the amount of adsorbed dyes: stronger interactions with cationic MB molecules ( and of 19.72 and 33.45 mg g−1, respectively) and reduced affinity for anionic RD ( and of 28.93 and 13.06 mg g−1, respectively) and neutral BR ( and of 36.75 and 15.85 mg g−1, respectively) molecules were recorded. The influence of pH variation on dyes adsorption was finally highlighted by reusability studies, with the negligible variation of adsorption capacity after five repeated sorption cycles claiming for the suitability of the proposed systems as effective sorbent for wastewater treatment. 相似文献
44.
金属有机框架(MOFs)具有大量的孔隙结构和活性位点,在气体吸附、催化、医疗等领域均发挥了巨大的作用。MOFs是晶体粉末,具有脆性较大、在水中易分解和不易回收等缺点,从而限制了其应用。通过MOFs与柔性高分子的复合,特别是与水凝胶的复合,极大地改善了复合材料的柔顺性、可回收和可加工性等特性,进一步拓宽了MOFs的应用领域。本文详细阐述了基于水凝胶MOFs原位生成法、MOFs /水凝胶同时生成法和水凝胶包裹MOFs法等三种不同方法制备MOFs/水凝胶复合材料的研究进展,并对上述三种制备方法的特点及其产物特征进行了总结,进一步归纳了复合材料在生物医药、催化、废水处理和气体吸附等领域的应用。最后,对MOFs/水凝胶复合材料制备方法的改进和复合材料应用前景进行了深入讨论和展望。 相似文献
45.
《中国化学快报》2021,32(9):2792-2796
A self-synthesized bi-pyridine chelating resin (PAPY) could separate Cu(II)/Ni(II)/Fe(II) sequentially from strong-acidic pickling wastewater by a two-stage pH-adjusted process, in which Cu(II), Ni(II), and Fe(II) were successively preferred by PAPY. In the first stage (pH 1.0), the separation factor of Cu(II) over Ni(II) reached 61.43 in Cu(II)-Ni(II)-Fe(II) systems. In the second stage (pH 2.0), the separation factor of Ni(II) over Fe(II) reached 92.82 in Ni(II)-Fe(II) systems. Emphasis was placed on the selective separation of Cu(II) and Ni(II) in the first-stage. The adsorption amounts of Cu(II) onto PAPY were 1.2 mmol/g in the first stage, while those of Ni(II) and Fe(II) were lower than 0.3 mmol/g. Cu(II) adsorption was hardly affected by Ni(II) with the presence of dense Fe(II), but Cu(II) inhibited Ni(II) adsorption strongly. Part of preloaded Ni(II) could be replaced by Cu(II) based on the replacement effect. Compared with the absence of Fe(II), dense Fe(II) could obviously enhance the separation of Cu(II)-Ni(II). More than 95.0% of Cu(II) could be removed in the former 240 BV (BV for bed volume of the adsorbent) in the fixed-bed adsorption column process with the flow rate of 2.5 BV/h. As proved by X-ray photoelectron spectrometry (XPS) and density functional theory (DFT) analyses, Cu(II) exerted a much stronger deprotonation and chelation ability toward PAPY than Ni(II) and Fe(II). Thus, the work shows a great potential in the separation and purification of heavy metal resources from strong-acidic pickling wastewaters. 相似文献
46.
Field-effect transistors (FETs) are one of the most widely-used electronic sensors for continuous monitoring and detection of contaminants such as pharmaceuticals and endocrine-disrupting compounds at low concentrations. FETs have been successfully utilized for the rapid analysis of these environmental pollutants due to their advantageous material properties like the disposability, rapid responses and simplicity. This paper presented an up-to-date overview of applied strategies with different bio-based materials in order to enhance the analytical performances of the designed sensors. Comparison and discussion were made between characteristics of recently engineered FET bio-sensors used for the detection of famous and selected pharmaceutical compounds in the literature. The recent progress in environmental research applications, comments on interesting trends, current challenge for future research in endocrine-disrupting chemicals’ (EDCs) detection using FETs biosensors were highlighted. 相似文献
47.
Conventional methods generally used to synthesize heterogeneous photocatalysts have some drawbacks, mainly the difficult control/preservation of catalysts’ morphology, size or structure, which strongly affect the photocatalytic activity. Supercritical carbon dioxide (scCO2)-assisted techniques have recently been shown to be a promising approach to overcome these limitations, which are still a challenge. In addition, compared to traditional methods, these innovative techniques permit the synthesis of high-performance photocatalysts by reducing the use of toxic and polluting solvents and, consequently, the environmental impact of long-term catalyst preparation. Specifically, the versatility of scCO2 allows to prepare catalysts with different structures (e.g., nanoparticles or metal-loaded supports) by several supercritical processes for the photocatalytic degradation of various compounds. This is the first updated review on the use of scCO2-assisted techniques for photocatalytic applications. We hope this review provides useful information on different approaches and future perspectives. 相似文献
48.
Aphiwe Siyasanga Gugushe Anele Mpupa Tshimangadzo Saddam Munonde Luthando Nyaba Philiswa Nosizo Nomngongo 《Molecules (Basel, Switzerland)》2021,26(11)
In this study, Fe3O4-ZrO2 functionalized with 3-aminopropyltriethoxysilane (Fe3O4-ZrO2@APS) nanocomposite was investigated as a nanoadsorbent for the removal of Cd(II), Cu(II), Mn (II) and Ni(II) ions from aqueous solution and real samples in batch mode systems. The prepared magnetic nanomaterials were characterized using X-ray powder diffraction (XRD), scanning electron microscopy/energy dispersion x-ray (SEM/EDX) Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). Factors (such as adsorbent dose and sample pH) affecting the adsorption behavior of the removal process were studied using the response surface methodology. Under optimized condition, equilibrium data obtained were fitted into the Langmuir and Freundlich isotherms and the data fitted well with Langmuir isotherms. Langmuir adsorption capacities (mg/g) were found to be 113, 111, 128, and 123 mg/g for Cd, Cu, Ni and Mn, respectively. In addition, the adsorption kinetics was analyzed using five kinetic models, pseudo-first order, pseudo-second order, intraparticle diffusion and Boyd models. The adsorbent was successfully applied for removal of Cd(II), Cu(II), Mn (II) and Ni(II) ions in wastewater samples. 相似文献
49.
Fbio Bernardo Providencia Gonzlez-Hernndez Nuno Ratola Vernica Pino Arminda Alves Vera Homem 《Molecules (Basel, Switzerland)》2021,26(11)
Volatile methylsiloxanes (VMSs) constitute a group of compounds used in a great variety of products, particularly personal care products. Due to their massive use, they are continually discharged into wastewater treatment plants and are increasingly being detected in wastewater and in the environment at low concentrations. The aim of this work was to develop and validate a fast and reliable methodology to screen seven VMSs in water samples, by headspace solid-phase microextraction (HS-SPME) followed by gas chromatography with flame ionization detection (GC-FID). The influence of several factors affecting the extraction efficiency was investigated using a design of experiments approach. The main factors were selected (fiber type, sample volume, ionic strength, extraction and desorption time, extraction and desorption temperature) and optimized, employing a central composite design. The optimal conditions were: 65 µm PDMS/Divinylbenzene fiber, 10 mL sample, 19.5% NaCl, 39 min extraction time, 10 min desorption time, and 33 °C and 240 °C as extraction and desorption temperature, respectively. The methodology was successfully validated, showing low detection limits (up to 24 ng/L), good precision (relative standard deviations below 15%), and accuracy ranging from 62% to 104% in wastewater, tap, and river water samples. 相似文献
50.
Jiwon Choi Jun Seop Yun Hyeeun Song Yong-Keol Shin Young-Hoon Kang Palinda Ruvan Munashingha Jeongyeon Yoon Nam Hee Kim Hyun Sil Kim Jong In Yook Dongseob Tark Yun-Sook Lim Soon B. Hwang 《Molecules (Basel, Switzerland)》2021,26(12)
African swine fever virus (ASFV) causes a highly contagious and severe hemorrhagic viral disease with high mortality in domestic pigs of all ages. Although the virus is harmless to humans, the ongoing ASFV epidemic could have severe economic consequences for global food security. Recent studies have found a few antiviral agents that can inhibit ASFV infections. However, currently, there are no vaccines or antiviral drugs. Hence, there is an urgent need to identify new drugs to treat ASFV. Based on the structural information data on the targets of ASFV, we used molecular docking and machine learning models to identify novel antiviral agents. We confirmed that compounds with high affinity present in the region of interest belonged to subsets in the chemical space using principal component analysis and k-means clustering in molecular docking studies of FDA-approved drugs. These methods predicted pentagastrin as a potential antiviral drug against ASFVs. Finally, it was also observed that the compound had an inhibitory effect on AsfvPolX activity. Results from the present study suggest that molecular docking and machine learning models can play an important role in identifying potential antiviral drugs against ASFVs. 相似文献