首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4214篇
  免费   912篇
  国内免费   290篇
化学   5140篇
晶体学   29篇
力学   10篇
综合类   39篇
数学   37篇
物理学   161篇
  2024年   4篇
  2023年   45篇
  2022年   76篇
  2021年   156篇
  2020年   322篇
  2019年   240篇
  2018年   200篇
  2017年   156篇
  2016年   345篇
  2015年   340篇
  2014年   305篇
  2013年   366篇
  2012年   272篇
  2011年   279篇
  2010年   269篇
  2009年   273篇
  2008年   287篇
  2007年   284篇
  2006年   270篇
  2005年   223篇
  2004年   203篇
  2003年   186篇
  2002年   55篇
  2001年   45篇
  2000年   38篇
  1999年   25篇
  1998年   19篇
  1997年   49篇
  1996年   37篇
  1995年   29篇
  1994年   5篇
  1993年   4篇
  1992年   3篇
  1990年   3篇
  1986年   1篇
  1985年   1篇
  1981年   1篇
排序方式: 共有5416条查询结果,搜索用时 281 毫秒
181.
Molecule‐based micro‐/nanomaterials have attracted considerable attention because their properties can vary greatly from the corresponding macro‐sized bulk systems. Recently, the construction of multicomponent molecular solids based on crystal engineering principles has emerged as a promising alternative way to develop micro‐/nanomaterials. Unlike single‐component materials, the resulting multicomponent systems offer the advantages of tunable composition, and adjustable molecular arrangement, and intermolecular interactions within their solid states. The study of these materials also supplies insight into how the crystal structure, molecular components, and micro‐/nanoscale effects can influence the performance of molecular materials. In this review, we describe recent advances and current directions in the assembly and applications of crystalline multicomponent micro‐/nanostructures. Firstly, the design strategies for multicomponent systems based on molecular recognition and crystal engineering principles are introduced. Attention is then focused on the methods of fabrication of low‐dimensional multicomponent micro‐/nanostructures. Their new applications are also outlined. Finally, we briefly discuss perspectives for the further development of these molecular crystalline micro‐/nanomaterials.  相似文献   
182.
Fiber-reinforced-concrete (FRC) mechanism refers short discrete fibers that are uniformly distributed and randomly oriented, which offers an effective way to improve the mechanical performance of concrete. In the design of supramolecular polymers, an analogous concept of FRC appears to have been considered very rarely-although fibrous structure has been frequently observed/generated during the supramolecular polymerization. In this work, we apply the alkane thermosets, octadecane (C18H38) and tetracosane (C24H50), taking the role of “concrete”, and the low-molecular-weight monomer with long alkyl chains as the essential “fiber” component, to fabricate the “fiber reinforced supramolecular polymer”. Very much like FRC mechanism in material science, the resulting fiber reinforced supramolecular polymer thus exhibit unusually high mechanical strength and stiffness, which is unprecedented in the conventional supramolecular strategy.  相似文献   
183.
Three Pt4L2L′2 heteroleptic rectangles ( 1 – 3 ), containing ditopic redox-active bis-pyridine functionalized perylene bisimide (PBI) ligands PBI-pyr2 ( L ) are reported. Co-ligand L′ is a dicarboxylate spacer of varying length, leading to modified overall size of the assemblies. 1H NMR spectroscopy reveals a trend in the splitting and upfield chemical shift of the PBI-hydrogens in the rectangles with respect to free PBI, most pronounced with the largest strut length ( 3 ) and least with the smallest strut length ( 1 ). This is attributed to increased rotational freedom of the PBI-pyr 2 ligand over its longitudinal axis (Npy-Npy), due to increased distance between the PBI-surfaces, which is corroborated by VT-NMR measurements and DFT calculations. The intramolecular motion entails desymmetrization of the two PBI-ligands, in line with cyclic voltammetry (CV) data. The first (overall two-electron) reduction event and re-oxidation for 1 display a subtle peak-to-peak splitting of 60 mV, whilst increased splitting of this event is observed for 2 and 3 . The binding of pyrene in 1 is probed to establish proof of concept of host-guest chemistry enabled by the two PBI-motifs. Fitting the binding curve obtained by 1H NMR titration with a 1:1 complex formation model led to a binding constant of 964±55 m −1. Pyrene binding is shown to directly influence the redox-chemistry of 1 , resulting in a cathodic and anodic shift of approximately 46 mV on the first and second reduction event, respectively.  相似文献   
184.
An ultrasound-assisted nanoscaled supramolecular coordination polymer (nanosized 1′ ) has been synthesized using a self-assembly reaction of K3[Cu (CN)4] and hexamethylenetetramine in the presence of Me3SnCl under ambient conditions. Nanosized 1′ was examined using elemental analysis, Fourier transform–infrared, transmission electron microscopy, scanning electron microscopy and X-ray powder diffractions. It was structurally compared with the single crystal supramolecular coordination polymer 3[Cu6(CN)7(C6H12N4)2(OH3)]; SCP 1. The photocatalytic activities of nanosized 1′ and SCP 1 toward different hazardous organic dyes were determined under ambient, UV-light irradiation and ultrasonic conditions. SCP 1 and nanosized 1′ as heterogeneous nanoparticles catalysts exhibited high catalytic activity for degradation of Congo Red, Methyl Violet 2B and Methylene Blue dyes. The effects of operational parameters on catalytic degradation process, identification of the degradation products and recycling of the catalyst were also investigated. SCP 1 and nanosized 1′ are recyclable heterogeneous catalysts and can be reused with efficient activities. The mechanism of degradation using different scavenger techniques iss proposed and discussed. The catalytic oxidation process is mainly caused by OH radicals.  相似文献   
185.
The syntheses of novel amphiphilic 5,5′,6,6′-tetrachlorobenzimidacarbocyanine (TBC) dye derivatives with aminopropanediol head groups, which only differ in stereochemistry (chiral enantiomers, meso form and conformer), are reported. For the achiral meso form, a new synthetic route towards asymmetric cyanine dyes was established. All compounds form J aggregates in water, the optical properties of which were characterised by means of spectroscopic methods. The supramolecular structure of the aggregates is investigated by means of cryo-transmission electron microscopy, cryo-electron tomography and AFM, revealing extended sheet-like aggregates for chiral enantiomers and nanotubes for the mesomer, respectively, whereas the conformer forms predominately needle-like crystals. The experiments demonstrate that the aggregation behaviour of compounds can be controlled solely by head group stereochemistry, which in the case of enantiomers enables the formation of extended hydrogen-bond chains by the hydroxyl functionalities. In case of the achiral meso form, however, such chains turned out to be sterically excluded.  相似文献   
186.
Graphene oxide (GO)-grafted nanosupramolecules have recently emerged as neoteric nano drug carriers in the therapy of refractory diseases. Herein, a multicomponent nanosupramolecular drug carrier based on a targeted peptide and magnetic GO is reported, the drug-release behavior of which can be regulated by an alternating magnetic field (AMF). This multicomponent nanosupramolecular carrier is composed of β-cyclodextrin (β-CD)/nickel nanoparticle-modified graphene oxide (GONiCD) and mitochondrial ion-targeting peptide (MitP)-grafted hyaluronic acid (HAMitP). Owing to the host–guest interaction between β-cyclodextrin and the cyclohexyl groups on MitP, GONiCD and HAMitP could form supramolecular assemblies during the doxorubicin (Dox) loading process, which not only remarkably enhances the drug-loading capacity, but also improves the drug-release efficiency under AMF stimulus. During co-incubation with tumor cells, the Dox-loaded assemblies could strongly target the tumor mitochondria and damage both the mitochondria and the nuclei, owing to Dox release from the assemblies induced by AMF. This study sheds light on the exploration of peptide caps for controlled drug loading/release of supramolecular nanocarriers for efficient drug delivery and anticancer therapy.  相似文献   
187.
Both molecular and crystal‐engineering approaches were exploited to synthesize a new class of multidrug‐containing supramolecular gelators. A well‐known nonsteroidal anti‐inflammatory drug, namely, indomethacin, was conjugated with six different l ‐amino acids to generate the corresponding peptides having free carboxylic acid functionality, which reacted further with an antiviral drug, namely, amantadine, a primary amine, in 1:1 ratio to yield six primary ammonium monocarboxylate salts. Half of the synthesized salts showed gelation ability that included hydrogelation, organogelation and ambidextrous gelation. The gels were characterized by table‐top and dynamic rheology and different microscopic techniques. Further insights into the gelation mechanism were obtained by temperature‐dependent 1H NMR spectroscopy, FTIR spectroscopy, photoluminescence and dynamic light scattering. Single‐crystal X‐ray diffraction studies on two gelator salts revealed the presence of 2D hydrogen‐bonded networks. One such ambidextrous gelator (capable of gelling both pure water and methyl salicylate, which are important solvents for biological applications) was promising in both mechanical (rheoreversible and injectable) and biological (self‐delivery) applications for future multidrug‐containing injectable delivery vehicles.  相似文献   
188.
The hierarchical assembly of well‐organized submoieties could lead to more complicated superstructures with intriguing properties. We describe herein an unprecedented polyrotaxane polythreading framework containing a two‐fold nested super‐polyrotaxane substructure, which was synthesized through a uranyl‐directed hierarchical polythreading assembly of one‐dimensional polyrotaxane chains and two‐dimensional polyrotaxane networks. This special assembly mode actually affords a new way of supramolecular chemistry instead of covalently linked bulky stoppers to construct stable interlocked rotaxane moieties. An investigation of the synthesis condition shows that sulfate can assume a vital role in mediating the formation of different uranyl species, especially the unique trinuclear uranyl moiety [(UO2)3O(OH)2]2+, involving a notable bent [O=U=O] bond with a bond angle of 172.0(9)°. Detailed analysis of the coordination features, the thermal stability as well as a fluorescence, and electrochemical characterization demonstrate that the uniqueness of this super‐polyrotaxane structure is mainly closely related to the trinuclear uranyl moiety, which is confirmed by quantum chemical calculations.  相似文献   
189.
We describe a new concept for rotaxane synthesis through intramolecular slippage using π‐conjugated molecules as rigid axles linked with organic soluble and flexible permethylated α‐cyclodextrins (PM α‐CDs) as macrocycles. Through hydrophilic–hydrophobic interactions and flipping of PM α‐CDs, successful quantitative conversion into rotaxanes was achieved without covalent bond formation. The rotaxanes had high activation barrier for their de‐threading, so that they were kinetically isolated and derivatized even under conditions unfavorable for maintaining the rotaxane structures. 1H NMR spectroscopy experiments clearly revealed that the restricted motion of the linked macrocycle with the rigid axle made it possible to control the kinetic stability by adjusting the length of the rigid axle in the precursor structure rather than the steric bulkiness of the stopper unit.  相似文献   
190.
A convenient and efficient gram‐scale synthesis for enantiopure hemicryptophane–tren (tren=tris(2‐aminoethyl)amine) derivatives has been developed. The four‐step synthesis is based on the optical resolution of a key intermediate, cyclotriveratrylene, for which the energy barrier for racemization has been measured to ensure that no racemization occurs during the two last steps of the synthetic pathway. The assignments of the absolute configurations have been performed by electronic circular dichroism and the enantiopurity was determined by NMR spectroscopy in the presence of enantiopure camphor sulfonic acid. To highlight the interest of such compounds, the recognition of norephedrine neurotransmitter was investigated and showed a remarkable enantioselectivity towards the C3 symmetrical hosts. Finally, this highly modular synthetic pathway was used to provide eight enantiopure hemicryptophanes with different sizes, shapes, and functionalities. These results underline the high potential of this approach, which could lead to many applications in chiral recognition or asymmetric supramolecular catalysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号