首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   178篇
  免费   5篇
  国内免费   41篇
化学   215篇
综合类   1篇
物理学   8篇
  2024年   1篇
  2023年   2篇
  2022年   5篇
  2021年   8篇
  2020年   10篇
  2019年   4篇
  2018年   5篇
  2017年   8篇
  2016年   8篇
  2015年   5篇
  2014年   3篇
  2013年   14篇
  2012年   5篇
  2011年   11篇
  2010年   11篇
  2009年   15篇
  2008年   10篇
  2007年   12篇
  2006年   11篇
  2005年   10篇
  2004年   10篇
  2003年   7篇
  2002年   11篇
  2001年   6篇
  2000年   1篇
  1999年   2篇
  1998年   5篇
  1996年   3篇
  1995年   5篇
  1994年   5篇
  1993年   2篇
  1992年   4篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1982年   1篇
排序方式: 共有224条查询结果,搜索用时 15 毫秒
1.
Sulfonic cation exchangers with two ion exchange group concentrations (0.5 and 2.4 mmol/g, samples A and B, respectively) were obtained by sulfonation of a porous styrene (S) and divinylbenzene (DVB) copolymer with chlorosulfonic acid. Strong thermal decomposition of the sulfonated copolymer A, accompanied by significant changes in its porous structure, starts at ca. 400°C. The char has no sulfonic groups. After heat treatment at 400°C in steam, a sorbent was obtained (yield 65%) that shows higher phenol sorption than the untreated sample when related to the bed volume. The chlorosulfonic derivatives of the initial copolymer were less thermally resistant than the sulfonic ones obtained by hydrolysis. Pyrolysis of the cation exchanger B, in its H+ and Ca2+ forms, was carried out at 900°C (yield of both chars close to 30%). By subsequent steam activation at 800°C to a 50% burn-off of the char, sorbents with well-developed, but distinctly different, porous structures were obtained. The activated char from the sulfonated copolymer in its hydrogen form was highly microporous and indicated an effective surface area of 1180 m2/g. However, because of a low contribution of mesopores, its ability to adsorb phenol from the liquid phase was not very high. The activated char from the calcium-doped copolymer, indicating a smaller surface area (580 m2/g) but characterized by a well-developed mesoporosity, was a better sorbent for phenol. © 1994 John Wiley & Sons, Inc.  相似文献   
2.
A series of branched/crosslinked sulfonated polyimide (B/C‐SPI) membranes were prepared and evaluated as proton‐conducting ionomers based on the new concept of in situ crosslinking from sulfonated polyimide (SPI) oligomers and triamine monomers. Chemical branching and crosslinking in SPI oligomers with 1,3,5‐tris(4‐aminophenoxy)benzene as a crosslinker gave the polymer membranes very good water stability and mechanical properties under an accelerated aging treatment in water at 130 °C, despite their high ion‐exchange capacity (2.2–2.6 mequiv g?1). The resulting polymer electrolytes displayed high proton conductivities of 0.2–0.3 S cm?1 at 120 °C in water and reasonably high conductivities of 0.02–0.03 S cm?1 at 50% relative humidity. In a single H2/O2 fuel‐cell system at 90 °C, they exhibited high fuel‐cell performances comparable to those of Nafion 112. The B/C‐SPI membranes also displayed good performances in a direct methanol fuel cell with methanol concentrations as high as 50 wt % that were superior to those of Nafion 112. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3751–3762, 2006  相似文献   
3.
The sulfonated poly(ether ether ketone sulfone) (SPEEKS)/heteropolyacid (HPA) composite membranes with different HPA content in SPEEKS copolymers matrix with different degree of sulfonation (DS) were investigated for high temperature proton exchange membrane fuel cells. Composite membranes were characterized by Fourier transfer infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). FTIR band shifts suggested that the sulfonic acid groups on the copolymer backbone strongly interact with HPA particles. SEM pictures showed that the HPA particles were uniformly distributed throughout the SPEEKS membranes matrix and particle sizes decreased with the increment of copolymers' DS. The holes were not found in SPEEKS‐4/HPA30 (consisting of 70% SPEEKS copolymers with DS = 0.8 and 30% HPA) composite membrane after composite membranes were treated with boiling water for 24 h. Thermal stabilities of the composite membranes were better than those of pure sulfonated copolymers membranes. Although the composite membranes possessed lower water uptake, it exhibited higher proton conductivity for SPEEKS‐4/HPA30 especially at high temperature (above 100 °C). Its proton conductivity linearly increased from 0.068 S/cm at 25 °C to 0.095 S/cm at 120 °C, which was higher than 0.06 S/cm of Nafion 117. In contrast, proton conductivity of pure SPEEKS‐4 membrane only increased from 0.062 S/cm at 25 °C to 0.078 S/cm at 80 °C. At 120 °C, proton conductivity decreased to poor 0.073 S/cm. The result indicated that composite membranes exhibited high proton conductivity at high temperature. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1967–1978, 2006  相似文献   
4.
The crystallization, melting, and dissolution behavior of zinc stearate (ZnSt) in ZnSt-filled sulfonated poly(ethylene-co-propylene-co-ethylidene norbornene) (SEPDM) ionomers was studied by synchrotron small-angle X-ray scattering (SAXS). The melting temperature of ZnSt in the ionomer was considerably lower than in the pure state, which was consistent with the existence of very small ZnSt crystalline domains and a specific interaction between the metal sulfonate groups of the SEPDM and the metal carboxylate groups of ZnSt. Temperature-resolved SAXS showed that, on melting, some or all of the ZnSt rapidly dissolved into the ionomer. Ionic aggregates in the neat ionomer persisted up to 300°C. Microphase separation was also observed at elevated temperatures for the ZnSt-filled ionomers, but the composition of the microdomains was believed to be quite different than that of the microdomains in the neat SEPDM. The time and temperature dependence of the ZnSt crystallization in the filled ionomers was characterized by time-resolved SAXS experiments following a temperature quench from the melt. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 3141–3150, 1999  相似文献   
5.
New mixed sulfinated/sulfonated polysulfone PSU Udel has been produced by partial oxidation of sulfinated PSU with NaOCl. From the mixed sulfinated/sulfonated PSU, thin crosslinked polymer films have been produced by S-alkylation of the residual sulfinate groups with α,ω-diiodoalkanes having 4–10  (CH2) units. The advantages of the partial oxidation process using NaOCl are as follows: (1) The desired oxidation degree can be adjusted finely. (2) No side reactions take place during oxidation. (3) The partially oxidized polymers is stable at ambient temperature. By variation of the oxidation degree of the sulfinated/sulfonated prepolymer and by variation of the chain length of the diiodo crosslinker, crosslinked membranes with a large range of properties in terms of ionic conductivity, swelling, and permselectivity have been produced. The partially oxidized polymers have been characterized by redox titration, 1H-NMR, and FTIR. The crosslinked membranes have been characterized in terms of ionic conductivity (resistance), permselectivity, and swelling in dependence on ion-exchange capacity and oxidation degree of the prepolymers. In addition, the thermal stabilities of the membranes have been determined by TGA, and FTIR spectra have been recorded on the crosslinked films. Selected membranes show low ionic resistances, low swelling, and good temperature stability which makes them promising candidates for application in (electro)membrane processes. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1441–1448, 1998  相似文献   
6.
Among the methods available to reduce water production during oil recovery, injecting a gelling system composed of a polymer and a crosslinker has been widely used. In this study, a Plackett-Burman design was used for screening a large number of factors such as concentrations of polymer, crosslinker, pH, temperature, and presence or absence of NaCl, CaCl2, MgCl2, KCl, thiourea, sodium lactate, and nanoclay on the gelation time of sulfonated polyacrylamide nanocomposite hydrogels by rheological tests. Among these factors, temperature, pH, and CaCl2 concentration were found to have the greatest effect on the gelation time. The effects of these three factors and their interactions on the gelation time were then determined by using central composite design of response surface method. As a result, the interactions of CaCl2 concentration with temperature and pH were considerably more than the interactions of pH and temperature on the gelation time. At low pH (3 < pH < 7), the gelation time decreased by decrease of pH while at CaCl2 concentration of 3750–11250 ppm and at 7 < pH < 11, the gelation time increased with the increase of pH. It was found that temperature was the most effective parameter to control the gelation time.  相似文献   
7.
Sulfonated polyimide (SPI) and ZrO2 are blended to prepare a series of novel SPI/ZrO2 composite membranes for vanadium redox flow battery (VRFB) application. Results of atomic force microscopy and X‐ray diffraction reveal that ZrO2 is successfully composited with SPI. All SPI/ZrO2 membranes possess high proton conductivity (2.96–3.72 × 10?2 S cm?1) and low VO2+ permeability (2.18–4.04 × 10?7 cm2 min?1). SPI/ZrO2‐15% membrane is determined as the optimum one on account of its higher proton selectivity and improved chemical stability. The VRFB with SPI/ZrO2‐15% membrane presents higher coulombic efficiency and energy efficiency than that with Nafion 117 membrane at the current density, which ranged from 20 to 80 mA cm?2. Cycling tests indicate that the SPI/ZrO2‐15% membrane has good operation stability in the VRFB system. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
8.
In this work, we prepared amino-modified halloysite nanotubes (PEI-DHNTs) via the co-deposition of self-polymerized dopamine and polyethylenimine (PEI) on the surface of nanotubes, which was confirmed by X-ray photoelectron spectroscopy (XPS) and Thermogravimetric analysis (TGA). A series of composite proton exchange membranes (PEMs) were prepared by incorporating PEI-DHNTs and phosphotungstic acid (HPW) into sulfonated poly(ether ether ketone) (SPEEK). It was found that both PEI-DHNTs and HPW were well dispersed in the polymer matrix, exhibiting excellent filler-matrix compatibility. The composite membranes demonstrated enhanced proton conductivity, reaching as high as 0.078 S cm−1 with 33.3 wt.% HPW loading, which was ~90% higher than that of SPEEK control membrane. Such improvement was mainly attributed to the strong acid–base pairs formed by PEI-DHNT with both SPEEK and HPW, which shortened proton hopping distance and created more continuous proton conduction pathways. Furthermore, the membrane conductivity remained almost constant after 1 year's immersion in liquid water, indicating the successful immobilization of HPW in the composite membranes.  相似文献   
9.
采用新型固相萃取材料磺化的甲基丙烯酸缩水甘油酯接枝聚四氟乙烯(PTFE-g-GMA-SO3H)纤维填充微柱预富集和流动注射(FI)与高效液相色谱(HPLC)联用测定样品中痕量的三聚氰胺。 建立了以该纤维作为吸附剂在线测定奶制品中三聚氰胺的新方法。 对三聚氰胺的富集与洗脱条件进行了优化,并得出三聚氰胺的分析特性:该方法对三聚氰胺的检出限为1.13×10-2 mg/L,富集倍数为300,RSD为7.6%(n=9,三聚氰胺质量浓度为0.2 mg/L)。 该方法应用于2种奶制品中的痕量三聚氰胺的测定,样品加标回收率分别为98%和102.5%。  相似文献   
10.
With a view towards direct methanol fuel cell applications, novel sulfonated poly(phenylene sulfide sulfone nitrile) (sPPSSfN) has been prepared and subsequently crosslinked by a Friedel‐Craft reaction using 4,4′‐oxybis(benzoic acid) as a crosslinker to achieve lower water swelling and lower methanol permeability. The dimensional change of SPPSSfN40 is 43.7% in 90 °C liquid water but that of the crosslinked membrane, XsPPSSfN40, is 23.3% while maintaining proton conductivity at 0.22 S · cm−1. These results show that the Friedel‐Craft crosslinking of the novel sPPSSfN membrane effectively reduces water uptake and the degree of swelling while improving the dimensional stability and maintaining high proton conductivity.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号