首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   595篇
  免费   26篇
  国内免费   22篇
化学   546篇
力学   2篇
综合类   3篇
物理学   92篇
  2023年   2篇
  2022年   8篇
  2021年   25篇
  2020年   11篇
  2019年   16篇
  2018年   11篇
  2017年   20篇
  2016年   17篇
  2015年   22篇
  2014年   14篇
  2013年   51篇
  2012年   23篇
  2011年   40篇
  2010年   27篇
  2009年   49篇
  2008年   20篇
  2007年   43篇
  2006年   26篇
  2005年   37篇
  2004年   26篇
  2003年   21篇
  2002年   17篇
  2001年   13篇
  2000年   11篇
  1999年   10篇
  1998年   14篇
  1997年   13篇
  1996年   10篇
  1995年   5篇
  1994年   7篇
  1993年   6篇
  1992年   3篇
  1991年   3篇
  1990年   3篇
  1989年   4篇
  1987年   4篇
  1986年   3篇
  1985年   1篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
  1980年   2篇
排序方式: 共有643条查询结果,搜索用时 15 毫秒
91.
The thermal fractionation kinetics of a linear low‐density polyethylene (LLDPE) during Successive Self‐Nucleation and Annealing (SSA) is investigated by fast scanning chip‐calorimetry (FSC), by systematically varying the holding times (ts) at each fractionation temperature (Ts). The range of explored fractionation times spans four orders of magnitude, from 0.001 to 10 s. Discernible thermal fractions are already detected in the very early stages of the process, at ts shorter than one second. As ts increases, the melting endotherm after SSA indicates a progressive lamellar thickening and narrowing of the thicknesses distribution of the various crystalline fractions. The largest variations are observed for the families of crystals containing the longest crystallizable sequences, which also undergo a change of their relative content as a consequence of self‐nucleated crystallization at Ts. The quality of the thermal fractionation obtained in 10 seconds with FSC is equivalent to that of conventional differential scanning calorimetry SSA (ts = 300 s). © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 2200–2209  相似文献   
92.
Recent and earlier models of electrical field flow fractionation (ELFFF) have assumed that the electric field within the fluid domain is governed by Laplace's equation. This assumption results in a linear potential and a spatially constant field across the channel and is generally true for very dilute systems and relatively high effective potentials. Experimental studies show, however, that the effective potential within the channel may be less than 1% of the applied potential; this is apparently due to double layer formation and charge buildup at the poles. In such cases, local analyte concentrations can, nonetheless, be orders of magnitude higher than the bulk mean and the local potential small, both of which can lead to a nonlinear spatial distribution of the field strength. In such cases Poisson's equation must be used rather than Laplace's equation. Steady-state ELFFF simulations were performed using a Poisson's equation-based model. The domain in which Laplace's equation is valid was identified and the effects of concentration and effective field strength on device performance were explored.  相似文献   
93.
Vale MG  Silva MM  Damin IC  Sanches Filho PJ  Welz B 《Talanta》2008,74(5):1385-1391
In recent work, it has been shown that electrothermal atomic absorption spectrometry (ET AAS) can be used to differentiate between volatile and non-volatile nickel and vanadium compounds in crude oil. In the present work, the distribution of these two groups of compounds over different fractions of crude oil was investigated. For this purpose two crude oil samples were separated in two steps: firstly, the asphaltenes were precipitated with n-heptane, and secondly, the maltenes were loaded on a silica column and eluted with solvents of increasing polarity. The four fractions of maltenes eluted from silica column were: F1, saturated and light aromatics; F2, polyaromatics; F3, resins; and F4, polar compounds. Fractions F1 and F2 were further investigated using gas chromatography, and all fractions were characterized by CHN analysis, confirming the increase of aromatics in the fractions 2, 3, 4 and asphaltenes. For the determination of Ni and V by ET AAS, oil-in-water emulsions were prepared. The speciation analysis was carried out measuring without chemical modifier (stable compounds) and with 20 μg palladium (total Ni and V) and the volatile fraction was calculated by difference. The limits of detection were 0.02 μg g−1 and 0.06 μg g−1, for Ni and V, respectively, based on an emulsion of 2 g of oil in 10 mL. The volatile species of Ni and V were associated with fractions F3 and F4, while only thermally stable Ni and V was precipitated in part together with the asphaltenes.  相似文献   
94.
大气丙酮碳同位素组成测定方法的研究   总被引:1,自引:0,他引:1  
利用气相色谱/燃烧/同位素比值质谱(GC/C/IRMS)分析技术,研究了具有不同碳同位素组成的丙酮与衍生剂2,4-二硝基苯肼(DNPH)的液相反应及其相应的气相反应实验过程中的碳同位素效应,探讨了以该方法测定大气丙酮碳同位素组成的可行性。研究结果表明,在衍生化过程中不会产生碳同位素分馏。本实验通过测定衍生剂DNPH与相应的衍生物的碳同位素值,大气中丙酮碳同位素组成通过质量平衡方程计算而求得。采用该方法对大气丙酮碳同位素组成的初步测定结果表明,具有相同排放源的大气丙酮碳同位素比值基本不变。本方法实验重现性好,测定精度高,可以用于分析大气丙酮的排放源研究。  相似文献   
95.
The Tessier extraction method was used for speciation of Cu, Pb, Zn, As, Fe and Mn in a large concentration range in contaminated soil with various mineralogical compositions. The results were compared by X-ray fluorescence spectrometry (XRF) as a reference method using the Bland and Altman test. A sum of five fractions (exchangeable, bound to carbonates, Fe-Mn oxides, organic matter and residual forms) was compared with the total content determined on solid matrix by the reference method. A good agreement between the methods in the whole concentration range was found for Cu, Zn, As, and Fe. For Mn and Pb, XRF was found suitable to verify the sequential extraction only for concentrations above 250 mg kg−1. This was a consequence of a poorer reproducibility of Pb extraction using the Tessier scheme due to a great difference in the mineralogical composition and the diversity of the Pb species identified in soil. The poorer result of Mn was attributed to the spectral interference of Fe in XRF. Presented at the 34th International Conference of the Slovak Society of Chemical Engineering, Tatranské Matliare, 21–25 May 2007.  相似文献   
96.
Determination of thallium in polluted environmental samples and their extracts obtained by a modified BCR three-step sequential extraction procedure was used to study thallium distribution and mobility in the monitored polluted area affected by acidification (Šobov, Central Slovakia). The results of fractionation applied to 5 soil certified reference materials and 14 environmental samples show that the vast majority of thallium occurred in the residual fraction. This means that highly toxic thallium is strongly entrapped in the parent rock materials remains immobile and its environmental toxicity is therefore reduced. The limit of detection for thallium in the studied fractions was lower than 0.050 mg kg−1, the precision (RSD) of the ultratrace determination of thallium in the studied fractions was better than 17 % and the accuracy of the used method was verified by analyzing certified reference materials. Presented at the XVIIIth Slovak Spectroscopic Conference, Spišská Nová Ves, 15–18 October 2006.  相似文献   
97.
Three typical schemes for metal fractionation were applied to analyse coastal surface sediment samples from Bahía Blanca estuary, where an important industrial emplacement is located. Also, three certified reference materials for total metal concentrations were analysed. The studied metals were cadmium, chromium, copper, lead and zinc because of their hazardous potential and related abundance in the estuary. The concentration of metals was determined by inductively coupled plasma-optical emission spectrometry (ICP-OES). A three-way multivariate analysis was performed in order to obtain a better visualization of the experimental data. The extracted information was used to evaluate the equivalence among the results obtained by the three sequential extraction schemes. The data were analysed by parallel factor analysis (PARAFAC). PARAFAC models with two factors describe appropriately the data sets (explained variance about 54% and core consistency of 100%). The multivariate decomposition showed that the three applied schemes are able to describe equally well the behaviour of the metals in the different sediment fractions.  相似文献   
98.
A universal technique has been proposed to sort two‐dimensional (2D) sub‐nanometer thin crystals (manganese dioxide MnO2 and molybdenum disulfide MoS2) according to their lateral dimensions. This technique is based on tuning the zeta potential of their aqueous dispersions which induces the selective sedimentation of large‐sized 2D crystals and leaves the small‐sized counterparts in suspension. The electrocatalytic properties of as‐obtained 2D ultrathin crystals are strongly dependent on their lateral size. As a proof‐of‐concept study, the small‐sized MnO2 nanocrystals were tested as the electrocatalysts for the urea‐oxidation reaction (UOR), which showed outstanding performance in both half reaction and full electrolytic cell. A mechanism study reveals the enhanced performance is associated with the remarkable structural properties of MnO2 including ultrathin (ca. 0.95 nm), laterally small‐sized (50–200 nm), and highly exposed active centers.  相似文献   
99.
Predicting the location where a protein resides within a cell is important in cell biology. Computational approaches to this issue have attracted more and more attentions from the community of biomedicine. Among the protein features used to predict the subcellular localization of proteins, the feature derived from Gene Ontology (GO) has been shown to be superior to others. However, most of the sights in this field are set on the presence or absence of some predefined GO terms. We proposed a method to derive information from the intrinsic structure of the GO graph. The feature vector was constructed with each element in it representing the information content of the GO term annotating to a protein investigated, and the support vector machines was used as classifier to test our extracted features. Evaluation experiments were conducted on three protein datasets and the results show that our method can enhance eukaryotic and human subcellular location prediction accuracy by up to 1.1% better than previous studies that also used GO-based features. Especially in the scenario where the cellular component annotation is absent, our method can achieved satisfied results with an overall accuracy of more than 87%.  相似文献   
100.
The non-linear dynamics of stable carbon and hydrogen isotope signatures during methane oxidation by the methanotrophic bacteria Methylosinus sporium strain 5 (NCIMB 11126) and Methylocaldum gracile strain 14 L (NCIMB 11912) under copper-rich (8.9 µM Cu2+), copper-limited (0.3 µM Cu2+) or copper-regular (1.1 µM Cu2+) conditions has been described mathematically. The model was calibrated by experimental data of methane quantities and carbon and hydrogen isotope signatures of methane measured previously in laboratory microcosms reported by Feisthauer et al. [1 Feisthauer S, Vogt C, Modrzynski J, Szlenkier M, Krüger M, Siegert M, Richnow HH. Different types of methane monooxygenases produce similar carbon and hydrogen isotope fractionation patterns during methane oxidation. Geochim Cosmochim Acta. 2011;75:11731184. doi: 10.1016/j.gca.2010.12.006[Crossref], [Web of Science ®] [Google Scholar]] M. gracile initially oxidizes methane by a particulate methane monooxygenase and assimilates formaldehyde via the ribulose monophosphate pathway, whereas M. sporium expresses a soluble methane monooxygenase under copper-limited conditions and uses the serine pathway for carbon assimilation. The model shows that during methane solubilization dominant carbon and hydrogen isotope fractionation occurs. An increase of biomass due to growth of methanotrophs causes an increase of particulate or soluble monooxygenase that, in turn, decreases soluble methane concentration intensifying methane solubilization. The specific maximum rate of methane oxidation υm was proved to be equal to 4.0 and 1.3 mM mM?1 h?1 for M. sporium under copper-rich and copper-limited conditions, respectively, and 0.5 mM mM?1 h?1 for M. gracile. The model shows that methane oxidation cannot be described by traditional first-order kinetics. The kinetic isotope fractionation ceases when methane concentrations decrease close to the threshold value. Applicability of the non-linear model was confirmed by dynamics of carbon isotope signature for carbon dioxide that was depleted and later enriched in 13C. Contrasting to the common Rayleigh linear graph, the dynamic curves allow identifying inappropriate isotope data due to inaccurate substrate concentration analyses. The non-linear model pretty adequately described experimental data presented in the two-dimensional plot of hydrogen versus carbon stable isotope signatures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号