首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  免费   5篇
  国内免费   4篇
化学   31篇
力学   5篇
数学   2篇
物理学   7篇
  2024年   1篇
  2023年   1篇
  2022年   5篇
  2021年   5篇
  2020年   5篇
  2019年   3篇
  2018年   3篇
  2017年   2篇
  2016年   7篇
  2015年   1篇
  2014年   3篇
  2013年   4篇
  2012年   2篇
  2011年   1篇
  2010年   2篇
排序方式: 共有45条查询结果,搜索用时 218 毫秒
11.
Here a novel applications of entropy generation optimization is presented for nonlinear Sisko nanomaterial flow by rotating stretchable disk. Flow is examined in the absence of magnetohydrodynamics and Joule heating. Total irreversibility rate (entropy generation rate) is investigated for different flow parameters. Heat source/sink and viscous dissipation effects are considered. Impacts of Brownian motion and thermophoresis on irreversibility have been analyzed. Governing flow equations comprise momentum, energy and nanoparticle concentration. Von Karman's similarity variables are implemented for reduction of PDEs into ODEs. Homotopy analysis technique for series solutions is implemented. Attention is given to the irreversibility. The impacts of different flow parameters on velocity, nanoparticle concentration, temperature and irreversibility rate are graphically presented. From obtained results it is examined that irreversibility rate enhances for larger estimation of Brinkman number and diffusion. Furthermore it is also examined that temperature and nanoparticle concentration show contrast behavior through Prandtl number and Brownian motion.  相似文献   
12.
Magnetic composites and self-healing materials have been drawing much attention in their respective fields of application. Magnetic fillers enable changes in the material properties of objects, in the shapes and structures of objects, and ultimately in the motion and actuation of objects in response to the application of an external field. Self-healing materials possess the ability to repair incurred damage and consequently recover the functional properties during healing. The combination of these two unique features results in important advances in both fields. First, the self-healing ability enables the recovery of the magnetic properties of magnetic composites and structures to extend their service lifetimes in applications such as robotics and biomedicine. Second, magnetic (nano)particles offer many opportunities to improve the healing performance of the resulting self-healing magnetic composites. Magnetic fillers are used for the remote activation of thermal healing through inductive heating and for the closure of large damage by applying an alternating or constant external magnetic field, respectively. Furthermore, hard magnetic particles can be used to permanently magnetize self-healing composites to autonomously re-join severed parts. This paper reviews the synthesis, processing and manufacturing of magnetic self-healing composites for applications in health, robotic actuation, flexible electronics, and many more.  相似文献   
13.
Stretchable supercapacitors that can sustain their performance under unpredictable tensile force are important elements for practical applications of various portable and wearable electronics. However, the stretchability of most reported supercapacitors was often lower than 100 % because of the limitation of the electrodes used. Herein we developed all‐solid‐state supercapacitors with a stretchability as high as 240 % by using aligned carbon nanotube composites with compact structure as electrodes. By combined with pseudocapacitive molybdenum disulfide nanosheets, the newly developed supercapacitor showed a specific capacitance of 13.16 F cm?3, and also showed excellent cycling retention (98 %) after 10 000 charge–discharge cycles. This work also presents a general and effective approach in developing high‐performance electrodes for flexible and stretchable electronics.  相似文献   
14.
There has been ongoing keen interest to mold electronic devices into desired shapes and be laid on desired configurable surfaces. In specific, the ability to design materials that can bend, twist, compress and stretch repeatedly, while still able to maintain its full capability as conductors or electrodes, has led to numerous efforts to develop flexible and stretchable (bio)devices that are both technologically challenging and environmentally friendly (e.g. biodegradable). In this review, we highlight several recent significant results that have made impacts toward the field of flexible and stretchable electronics, sensors and power sources.  相似文献   
15.
Organic bulk heterojunction solar cells are promising candidates as future photovoltaic technologies for large‐scale and low‐cost energy production. It is, therefore, not surprising that research on the design and preparation of these types of organic photovoltaics has attracted a lot of attention since the last two decades, leading to constantly growing values of energy conversion and efficiency. Combined with the possibility of a large‐scale production via roll‐to‐roll printing techniques, bulk heterojunction solar cells enable the fabrication of conformable, light‐weight and flexible light‐harvesting devices for point‐of‐use applications. This perspective review will highlight the recent advances toward mechanically robust and intrinsically stretchable bulk heterojunction solar cells. Mechanically robust fullerene‐based and all‐polymer devices will be presented, as well as a comprehensive overview of the recent challenges and characterization techniques recently developed to overcome some of the challenges of this research area, which is still in its infancy.  相似文献   
16.
In this article we investigate the flow of Sutterby liquid due to rotating stretchable disk. Mass and heat transport are analyzed through Brownian diffusion and thermophoresis. Further the effects of magnetic field, chemical reaction and heat source are also accounted. We employ transformation procedure to obtain a system of nonlinear ODE's. This system is numerically solved by Built-in-Shooting method. Impacts of different involved parameter on velocity, temperature and concentration are described. Velocity, concentration and temperature gradients are numerically computed. Obtained results show that velocity is reduced through material parameter. Temperature and concentration are enhanced with thermophoresis parameter.  相似文献   
17.
Increasing the flexibility of polymer chains is a common method of increasing the deformability of solid polymeric materials. Here, the effects of “conjugation‐break spacers” (CBSs)—aliphatic units that interrupt the sp2‐hybridized backbone of semiconducting polymers—on the mechanical and photovoltaic properties of a diketopyrrolopyrrole‐based polymer are described. Unexpectedly, the tensile moduli and cracking behavior of a series of polymers with repeat units bearing 0%, 30%, 50%, 70%, and 100% of the CBS are not directly related to the percent incorporation of the flexible unit. Rather, the mechanical properties are a strong function of the order present in the film as determined by grazing‐incidence x‐ray diffraction. The effect of the CBSs on the photovoltaic performance of these materials, on the other hand, is more intuitive: it decreases with increasing fraction of the flexible units. These studies highlight the importance of solid‐state packing structure—as opposed to only the flexibility of the individual molecules—in determining the mechanical properties of a conjugated polymer film for stretchable, ultraflexible, and mechanically robust electronics.

  相似文献   

18.
基于三维组装技术的可延展结构具备优异的延展性和可调控性,使其成功应用于各类可延展电子器件的制备中。为了评估该类电子器件的稳定性,本文研究三维波纹型可延展结构的振动行为。首先,基于非线性的Euler-Bernoulli梁理论、Kelvin-Voigt粘弹性理论和考虑压电材料的表面压电效应,建立三维波纹结构的理论分析模型;其次,基于能量原理和扩展拉格朗日运动原理,推导出该结构的动力学控制方程;然后采用二级四阶辛Runge-Kutta求解该动力学方程。通过数值仿真实验验证了辛算法的优越性,同时,还发现随着三维波纹型可延展结构外界激励及其结构参数的变化,该结构的振动特性会从倍周期向分岔和混沌转化;本文结果为三维波纹型可延展结构的优化设计及应用提供理论基础。  相似文献   
19.
张天永  吴畏  朱剑  李彬  姜爽 《化学进展》2021,33(3):417-425
碳系材料具有导电性强、稳定性好、价格低廉等优点,被广泛用于制备可拉伸导电复合材料,并且在可拉伸、可穿戴电子设备等领域有巨大的应用潜力,引起了研究者的密切关注。本文介绍了碳系材料的种类,主要有炭黑、碳纳米管和石墨烯等;总结了3种纳米复合材料的主要制备工艺:原位聚合法、熔融共混法和溶液混合法,并介绍了传统印刷技术和新型打印技术。分析了复合材料的导电机理,介绍了渗流阈值理论;并重点探讨了其在可拉伸传感器和可拉伸能量储存设备领域的应用。针对基于纳米碳填料制备的可拉伸导电聚合物复合材料指出目前研究的不足之处:导电填料分散性差、导电网络不稳定和无法大规模生产等,并提出了多种解决方案。对基于纳米碳填料制备的可拉伸导电聚合物复合材料在微型化、可拉伸、可穿戴电子设备领域的应用前景作出了展望。  相似文献   
20.
This paper investigates the boundary layer flow of the Maxwell fluid around a stretchable horizontal rotating cylinder under the influence of a transverse magnetic field. The constitutive flow equations for the current physical problem are modeled and analyzed for the first time in the literature. The torsional motion of the cylinder is considered with the constant azimuthal velocity E. The partial differential equations (PDEs) governing the torsional motion of the Maxwell fluid together with energy transport are simplified with the boundary layer concept. The current analysis is valid only for a certain range of the positive Reynolds numbers. However, for very large Reynolds numbers, the flow becomes turbulent. Thus, the governing similarity equations are simplified through suitable transformations for the analysis of the large Reynolds numbers. The numerical simulations for the flow, heat, and mass transport phenomena are carried out in view of the bvp4c scheme in MATLAB. The outcomes reveal that the velocity decays exponentially faster and reduces for higher values of the Reynolds numbers and the flow penetrates shallower into the free stream fluid. It is also noted that the phenomenon of stress relaxation, described by the Deborah number, causes to decline the flow fields and enhance the thermal and solutal energy transport during the fluid motion. The penetration depth decreases for the transport of heat and mass in the fluid with the higher Reynolds numbers. An excellent validation of the numerical results is assured through tabular data with the existing literature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号