首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   75篇
  免费   5篇
  国内免费   4篇
化学   50篇
力学   11篇
综合类   1篇
数学   3篇
物理学   19篇
  2024年   1篇
  2022年   2篇
  2021年   3篇
  2020年   6篇
  2019年   3篇
  2018年   4篇
  2017年   6篇
  2016年   6篇
  2015年   4篇
  2014年   4篇
  2013年   4篇
  2012年   3篇
  2011年   4篇
  2010年   8篇
  2009年   4篇
  2008年   5篇
  2007年   1篇
  2006年   2篇
  2005年   2篇
  2004年   3篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
排序方式: 共有84条查询结果,搜索用时 15 毫秒
81.
The strength of materials is always reduced in the presence of notches and cracks and this phenomenon – known as notch sensitivity – is critical in structural design. Good structural materials (ductile metals, elastomers) tend to be notch insensitive, which was considered to be the optimum behavior. Here, we report that inverse notch insensitivity (where the failure stress of the notched specimen is higher than that of the unnotched counterpart) can be achieved in polypropylene nonwoven fabrics. This behavior is only possible because of the peculiar microstructure of nonwoven fabrics, in which fracture of interfiber bonds provides a source of non-linear deformation and leads to a change in the network topology. The former facilitates crack tip blunting, spreading damage in the ligament, while the re-orientation of the fibers perpendicular to the notch plane strengthens the material and improves the maximum load bearing capability.  相似文献   
82.
This article provides a comprehensive understanding of development of textiles functionalized with silver nanoparticles (AgNPs). There are three established methods to fabricate textiles functionalized with AgNPs, namely, solution‐immersion, layer‐by‐layer deposition, and sonochemical. In addition, several textile types such as cotton, wool, polyester, silk, cotton/polyester blend, polyamide, and regenerated cellulose have been used for the fabrication. The AgNP deposition mechanism on textiles is mainly due to electrostatic interaction between AgNPs and textile constituents. It was exhibited that the deposition of AgNPs on textiles can transform their textiles colors. In addition, it was demonstrated that the deposition of AgNPs on textiles is not permanent, particularly against washing treatment. Textiles modified with AgNPs have several promising applications such as antibacterial, antifungal, catalyst, electronic devices, water treatment, sun protection, air treatment, and surface‐enhanced Raman scattering, which are comprehensively discussed in this article. Future challenges in fabricating textiles functionalized with AgNPs remain on how this can be carried out to improve long‐term stabilization of AgNPs on textiles to achieve their permanent deposition by employing greener approaches.  相似文献   
83.
This paper describes an attempt to develop a durable finishing method in order to improve the fire performance of polyamide 66 fabrics. Hydroxymethylation with a 36% formaldehyde aqueous solution in association with a pad‐curing process to enable the fabric to react with flame‐retardant solutions was used in the finishing process. The fire performance of treated samples was characterized by limiting oxygen index (LOI) and vertical flammability tests, and the results show that the LOI value can increase from 21.6% to 46.2%. The thermal behavior of untreated and treated polyamide 66 fabrics was investigated by using thermogravimetic analysis and differential scanning calorimetry. Furthermore, residual char of treated fabric sample is much higher than that of untreated fabric sample. Fourier transform infrared spectroscopy proves that the substituted hydroxymethyl groups do exist on the molecular chain of polyamide fabric sample after surface modification. The morphology of residue char of polyamide 66 fabric samples was analyzed by scanning electron microscope, and the mechanical properties were also investigated and discussed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
84.
This research aimed to enhance the antibacterial activity of silver nanoparticles (AgNPs) synthesized from silver nitrate (AgNO3) using aloe vera extract. It was performed by means of incorporating AgNPs on an activated carbon nanoparticle (ACNPs) under ultrasonic agitation (40 kHz, 2 × 50 watt) for 30 min in an aqueous colloidal medium. The successful AgNPs synthesis was clarified with both Ultraviolet-Visible (UV-Vis) and Fourier Transform Infrared (FTIR) spectrophotometers. The successful AgNPs–ACNPs incorporation and its particle size analysis was performed using Transmission Electron Microscope (TEM). The brown color suspension generation and UV-Vis’s spectra maximum wavelength at around 480 nm confirmed the existence of AgNPs. The particle sizes of the produced AgNPs were about 5 to 10 nm in the majority number, which collectively surrounded the aloe vera extract secondary metabolites formed core-shell like nanostructure of 8.20 ± 2.05 nm in average size, while ACNPs themselves were about 20.10 ± 1.52 nm in average size formed particles cluster, and 48.00 ± 8.37 nm in average size as stacking of other particles. The antibacterial activity of the synthesized AgNPs and AgNPs-immobilized ACNPs was 57.58% and 63.64%, respectively (for E. coli); 61.25%, and 93.49%, respectively (for S. aureus). In addition, when the AgNPs-immobilized ACNPs material was coated on the cotton and polyester fabrics, the antibacterial activity of the materials changed, becoming 19.23% (cotton; E. coli), 31.73% (polyester; E. coli), 13.36% (cotton; S. aureus), 21.15% (polyester; S. aureus).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号