首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   167篇
  免费   13篇
  国内免费   14篇
化学   166篇
力学   1篇
综合类   1篇
数学   7篇
物理学   19篇
  2024年   1篇
  2023年   1篇
  2022年   9篇
  2021年   14篇
  2020年   2篇
  2019年   4篇
  2018年   6篇
  2017年   6篇
  2016年   7篇
  2015年   4篇
  2014年   7篇
  2013年   8篇
  2012年   9篇
  2011年   12篇
  2010年   8篇
  2009年   5篇
  2008年   10篇
  2007年   15篇
  2006年   9篇
  2005年   5篇
  2004年   4篇
  2003年   7篇
  2002年   6篇
  2001年   9篇
  2000年   4篇
  1999年   2篇
  1998年   5篇
  1997年   3篇
  1996年   4篇
  1995年   2篇
  1993年   1篇
  1992年   1篇
  1989年   1篇
  1987年   2篇
  1986年   1篇
排序方式: 共有194条查询结果,搜索用时 15 毫秒
161.
The relationship between the redox reaction of camphor‐induced cytochrome P‐450 (P‐450cam) and its activity was measured by using cyclic voltammetry. The redox potential of P‐450cam solution shifted to the lower side of the potential by binding of substrate, and the change was proportional to the amount of the substrate binding to the protein. The substrate binding was inhibited at the low concentration of oxygen in the reaction solution. The reaction product, hydroxycamphor, was observed in the reaction mixture by gas chromatography/mass spectroscopy. However, hydroxycamphor was not observed at an oxygen concentration of about a tenth part of the saturated one. The shift of redox potential of P‐450cam solution corresponded to the substrate specificity of the activity. These results suggest that the redox reaction of P‐450cam related to the substrate‐binding to the protein and its activity. Furthermore, the present system was very simple and speedy for the measurement of the activity. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   
162.
The substrate specificity of a camphor-induced cytochrome P-450 (P-450cam) was measured by using a new assay system: electrochemical control of P-450cam activity by protein immobilization on an electrode. Immobilized P-450cam showed the obvious substrate specificity for hydroxylation of the substrate, suggesting that the simple assay system is applicable for the study of the effect of the other components of the electron transfer system on activity. Copyright © 1998 John Wiley & Sons, Ltd.  相似文献   
163.
164.
We examined the ability of two human cytosolic transaminases, aspartate aminotransferase (GOT1) and alanine aminotransferase (GPT), to transform their preferred substrates whilst discriminating against similar metabolites. This offers an opportunity to survey our current understanding of enzyme selectivity and specificity in a biological context. Substrate selectivity can be quantitated based on the ratio of the kcat/KM values for two alternative substrates (the ‘discrimination index’). After assessing the advantages, implications and limits of this index, we analyzed the reactions of GOT1 and GPT with alternative substrates that are metabolically available and show limited structural differences with respect to the preferred substrates. The transaminases’ observed selectivities were remarkably high. In particular, GOT1 reacted ~106-fold less efficiently when the side-chain carboxylate of the ’physiological’ substrates (aspartate and glutamate) was replaced by an amido group (asparagine and glutamine). This represents a current empirical limit of discrimination associated with this chemical difference. The structural basis of GOT1 selectivity was addressed through substrate docking simulations, which highlighted the importance of electrostatic interactions and proper substrate positioning in the active site. We briefly discuss the biological implications of these results and the possibility of using kcat/KM values to derive a global measure of enzyme specificity.  相似文献   
165.
166.
组织工程相关生物材料表面工程的研究进展   总被引:9,自引:0,他引:9  
生物材料用作人工细胞外基质(ECM ) 在组织工程中占据重要位置。本文在分析细胞2生物材料表面相互作用的基础上, 从生物材料中的水、材料表面的形态、材料表面的特异性识别及生物材料诱发愈合等方面探讨了生物材料的复杂性。生物材料对细胞的影响是一个双向、动态过程, 起着调节细胞增殖和凋亡平衡的作用。基于生物材料对细胞生长的影响, 本文提出了生物材料表面生物仿生化以提高细胞亲和力,糖链团簇、糖脂质及材料表面蛋白质修饰以提高细胞特异性识别, 材料表面的自组装修饰以改善表面形态等观点。  相似文献   
167.
研究氢抽取反应OH+H2S对于理解酸雨形成、空气污染和气候变化的原因具有重要意义. 本文在降维模型下使用量子含时波包方法研究了OH+H2S→H2O+SH反应的动力学行为. 研究表明,该反应在低碰撞能时表现出无垒反应的特征,而在高碰撞能下表现出具有显著势垒的激活反应的特征. 激发反应物H2S分子的对称或反对称伸缩模式比激发弯曲模式更有效地促进了反应,该动力学特征可以通过各正则模式与反应坐标的耦合强度来解释. 此外,模式指定的反应速率常数表现出明显的非阿伦尼乌斯温度依赖性.  相似文献   
168.
The discovery and characterization of molecular interactions is crucial towards a better understanding of complex biological processes. Particularly protein-protein interactions (i.e., PPIs), which are responsible for a variety of cellular functions from intracellular signaling to enzyme-substrate specificity, have been studied broadly over the past decades. Position-specific scoring matrices (PSSM) in particular are used extensively to help determine interaction specificity or candidate interaction motifs at the residue level. However, not all studies successfully report their results as a candidate interaction motif. In many cases, this may be due to a lack of suitable tools for simple analysis and motif generation. Peptide Specificity Analyst (PeSA) was developed with the goal of filling this information gap and providing an easy to use software to aid peptide array analysis and motif generation. PeSA utilizes two models of motif creation: (1) frequency-based using a user-defined peptide list, and (2) weight-based using experimental binding results. The ability to produce motifs effortlessly will make studying, interpreting and disseminating peptide specificity results in an effortless and straightforward process.  相似文献   
169.
The 5′-nucleotidase UshA and the 3′-nucleotidase CpdB from Escherichia coli are broad-specificity phosphohydrolases with similar two-domain structures. Their N-terminal domains (UshA_Ndom and CpdB_Ndom) contain the catalytic site, and their C-terminal domains (UshA_Cdom and CpdB_Cdom) contain a substrate-binding site responsible for specificity. Both enzymes show only partial overlap in their substrate specificities. So, it was decided to investigate the catalytic behavior of chimeras bearing the UshA catalytic domain and the CpdB specificity domain, or vice versa. UshA_Ndom–CpdB_Cdom and CpdB_Ndom–UshA_Cdom were constructed and tested on substrates specific to UshA (5′-AMP, CDP-choline, UDP-glucose) or to CpdB (3′-AMP), as well as on 2′,3′-cAMP and on the common phosphodiester substrate bis-4-NPP (bis-4-nitrophenylphosphate). The chimeras did show neither 5′-nucleotidase nor 3′-nucleotidase activity. When compared to UshA, UshA_Ndom–CpdB_Cdom conserved high activity on bis-4-NPP, some on CDP-choline and UDP-glucose, and displayed activity on 2′,3′-cAMP. When compared to CpdB, CpdB_Ndom–UshA_Cdom conserved phosphodiesterase activities on 2′,3′-cAMP and bis-4-NPP, and gained activity on the phosphoanhydride CDP-choline. Therefore, the non-nucleotidase activities of UshA and CpdB are not fully dependent on the interplay between domains. The specificity domains may confer the chimeras some of the phosphodiester or phosphoanhydride selectivity displayed when associated with their native partners. Contrarily, the nucleotidase activity of UshA and CpdB depends strictly on the interplay between their native catalytic and specificity domains.  相似文献   
170.
A simple and simultaneous reverse phase high-performance liquid chromatographic method was developed for the quantification of aripiprazole (ARI) and two preservatives, namely, methyl paraben and propyl paraben in ARI oral solution. The method was developed on ACE C18 (4.6?×?250?mm, 5?µm) column using gradient elution of 0.1% v/v trifluoroacetic acid in water and acetonitrile as mobile phase components. Flow rate of 1.0?mL/min and 30°C column temperature were used for the method at quantification wavelength of 254?nm. The developed method was validated in accordance with International Conference on Harmonization guideline for various parameters. Forced degradation study was conducted in acid, base, peroxide, heat, and light stress conditions. ARI was found to degrade in oxidation, acid hydrolysis, and heat while it was stable under the remaining conditions. Specificity of the method was verified using Photo Diode Array (PDA) detector by evaluating purity of peaks from degradation samples. Major degradation impurities formed during stress study were identified using liquid chromatography–mass spectrometry method. The present method was useful for determining the content of all the three main analytes present in the oral solution without interference from degradation impurities. The method was robust under the deliberately modified conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号