首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3398篇
  免费   234篇
  国内免费   92篇
化学   3637篇
晶体学   11篇
综合类   9篇
物理学   67篇
  2024年   3篇
  2023年   47篇
  2022年   124篇
  2021年   73篇
  2020年   111篇
  2019年   109篇
  2018年   127篇
  2017年   191篇
  2016年   205篇
  2015年   195篇
  2014年   152篇
  2013年   252篇
  2012年   255篇
  2011年   274篇
  2010年   255篇
  2009年   304篇
  2008年   150篇
  2007年   193篇
  2006年   143篇
  2005年   137篇
  2004年   107篇
  2003年   106篇
  2002年   35篇
  2001年   17篇
  2000年   19篇
  1999年   27篇
  1998年   23篇
  1997年   32篇
  1996年   20篇
  1995年   19篇
  1994年   4篇
  1993年   5篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1983年   1篇
  1982年   1篇
排序方式: 共有3724条查询结果,搜索用时 31 毫秒
51.
Deng C  Yang X  Zhang X 《Talanta》2005,68(1):6-11
Panaxynol is a bioactive component in traditional Chinese medicines (TCMs), such as Saposhnikovia divaricata and Panax ginseng. In the work, two solvent-free sample techniques of pressurized hot water extraction (PHWE) and headspace liquid-phase microextraction (HS-LPME) were combined and developed for the determination of panaxynol in a TCM of S. divaricata. Panaxynol in the TCM samples from different growing areas was extracted by PHWE in dynamic mode, followed by extraction and concentration with HS-LPME and analysis with gas chromatography-mass spectrometry (GC-MS). The PHWE and HS-LPME parameters were optimized and the method validations were studied. Panaxynol in S. divaricata from four different growing areas was quantitatively analyzed by internal standard method. These results have shown that PHWE-LPME-GC-MS is a simple, rapid, efficient and low-cost method for the determination of panaxynol in TCMs and is a potential tool for TCM quality assessment.  相似文献   
52.
Anabolic androgenic steroids (AAS) are metabolized extensively in the human body, resulting mainly in the formation of glucuronide conjugates. Current detection methods for AAS are based on gas chromatographic/mass spectrometric (GC/MS) analysis of the hydrolyzed steroid aglycones. These analyses require laborious sample preparation steps and are therefore time consuming. Our interest was to develop a rapid and straightforward method for intact steroid glucuronides in biological samples, using liquid-phase microextraction (LPME) sample clean-up and concentration method combined with liquid chromatographic/tandem mass spectrometric (LC/MS/MS) analysis. The applicability of LPME was optimized for 13 steroid glucuronides, and compared with conventional liquid-liquid extraction (LLE) and solid-phase extraction (SPE) procedures. An LC/MS/MS method was developed for the quantitative detection of AAS glucuronides, using a deuterium-labeled steroid glucuronide as the internal standard. LPME, owing to its high specificity, was shown to be better suited than conventional LLE and SPE for the clean-up of urinary AAS glucuronides. The LPME/LC/MS/MS method was fast and reliable, offering acceptable reproducibility and linearity with detection limits in the range 2-20 ng ml(-1) for most of the selected AAS glucuronides. The method was successfully applied to in vitro metabolic studies, and also tested with an authentic forensic urine sample. For a urine matrix the method still has some unsolved problems with specificity, which should be overcome before the method can be reliably used for doping analysis, but still offering additional and complementary data for current GC/MS analyses.  相似文献   
53.
A simple and rapid solid-phase microextraction (SPME) method is presented based on activated charcoal–PVC fiber for determination of some organophosphorus pesticides from aqueous samples in direct mode SPME. After optimization of the experimental variables affecting SPME of the target compounds from aqueous solutions, the proposed method was applied to determine pesticides in fruit juice. The analytes in this procedure were preconcentrated for 15 min on the SPME fiber and subsequently desorbed by heating the fiber at 200 °C for 5 min in the GC injection port. Separation was on a capillary column GC followed by flame ionization detection. Recoveries of the pesticides studied in aqueous samples ranged 42%–63% and repeatability for all analytes was < 9% for a single fiber. Fiber-to-fiber reproducibility was < 18%.  相似文献   
54.
Summary A study of different extraction techniques for the determination of a selected group of organochlorine compounds in surface waters is presented. Comparison of liquid-liquid extraction (LLE) with solid-phase extraction (SPE) and solid-phase microextraction (SPME) with fibers of different polarity shows that SPME with a recently commercialised fiber of polydimethylsiloxane divinylbenzene allows these compounds to be determined in surface waters with good extraction efficiencies. Extraction time, effect of temperature, ionic strength and pH were optimised, allowing quantification in agricultural effluents in the range 1.0–60 ng·L−1.  相似文献   
55.
Summary A sensitive headspace SPME method for the extraction of residual solvents from pharmaceutical products has been developed and optimized. It was found that minimizing sample and headspace volume has a beneficial effect on extraction efficiency. At the same time the method reproducibility was seriously affected by reducing sample and headspace volume. The added air volume was not found to have any significant influence on method sensitivity. The method showed reproducibilities of less than 10% and detection limits as low as 1 ppb for benzene and dichloromethane. The headspace SPME method is around 1000 times more sensitive than static headspace. The optimized parameters were headspace volume 1.5 mL, sample volume 10 μL, and extraction time 30 min. The method was successfully applied to the identification of unknown residual solvents in three different proprietary active drug substances and was successfully applied to the confirmation of the presence of benzene in a proprietary drug substance. Presented at Balaton Symposium '01 on High-Performance Separation Methods, Siófok, Hungary, September 2–4, 2001  相似文献   
56.
A method for the determination of trace Cr(III) in aqueous solution by solid-phase microextraction (SPME) coupled with gas chromatography (GC)-flame photometric detection (FPD) was developed. Aqueous Cr(III) was first converted to the volatile chromium trifluoroacetylacetonate (Cr(tfa)3) by derivatization with 1,1,1-trifluoroacetylacetone (Htfa), followed by SPME extraction using a polyimide-coated silica fiber. The distribution constants (K) of derivatized cis- and trans-Cr(tfa)3 between the polyimide phase and aqueous phase were 2012 and 2214, respectively. The two Cr(tfa)3 isomers extracted can be efficiently separated by a DB-210 GC column within 9 min. Selective detection of Cr was performed by a FPD equipped with a 385-nm long-pass filter. Linearity (r> 0.99) over the concentration range 5-300 ng ml(-1) Cr was obtained and the limit of detection was 2 ng ml(-1) Cr. The relative standard deviation was 7% at 10 ng ml(-1) Cr (n = 5). Applicability of this method to water analysis was tested by analyzing the chromium content in a reference standard water sample and an industrial effluent.  相似文献   
57.
In this paper a solid-phase microextraction–gas chromatography–mass spectrometry (SPME–GC–MS) method is proposed for a rapid analysis of some frequently prescribed selective serotonin re-uptake inhibitors (SSRI)—venlafaxine, fluvoxamine, mirtazapine, fluoxetine, citalopram, and sertraline—in urine samples. The SPME-based method enables simultaneous determination of the target SSRI after simple in-situ derivatization of some of the target compounds. Calibration curves in water and in urine were validated and statistically compared. This revealed the absence of matrix effect and, in consequence, the possibility of quantifying SSRI in urine samples by external water calibration. Intra-day and inter-day precision was satisfactory for all the target compounds (relative standard deviation, RSD, <14%) and the detection limits achieved were <0.4 ng mL–1 urine. The time required for the SPME step and for GC analysis (30 min each) enables high throughput. The method was applied to real urine samples from different patients being treated with some of these pharmaceuticals. Some SSRI metabolites were also detected and tentatively identified.  相似文献   
58.
In this study, the determination of 4-Bromoaniline (4-BA) in green algae Chlamydomonas reinhardtii (C. reinhardtii) was investigated by applying continuous-flow microextraction (CFME) combined with high-performance liquid chromatography (HPLC). Continuous-flow microextraction was conducted in a homemade glass chamber, i.e. the sample solution flowed through a constant volume drop of solvent in the chamber at a constant flow rate. The effects of different factors on extraction efficiencies were also investigated and these factors included the kind of extraction solvent, solvent drop volume, sample flow rate, extraction time and addition amount of salt. Under the optimum extraction conditions (extraction solvent, carbon tetrachloride; solvent drop volume, 3.5 μL; sample flow rate, 1.0 mL min−1; extraction time, 10 min; no addition of salt), the calibration plot was set up by plotting peak area against a series of 4-Bromoaniline concentrations (0.01–10 μg mL−1) in aqueous solution. The correlation coefficient (r) was 0.9990. The limit of detection (LOD) was 0.6 ng mL−1. The precision of this method was obtained by successive five time analyses of 100-ng mL−1 standard solution of 4-Bromoaniline, and the relative standard deviation (RSD) was 3.5%. The concentration factor was calculated by the ratio of peak area of the analyte obtained after and before extraction and found to be 10.6. 4-Bromoaniline residues in Chlamydomonas. reinhardtii cells and tap water samples were satisfactorily analyzed according to the method described above.  相似文献   
59.
In this study, the cooling effect was applied to an evanescent wave type infrared (IR) chemical sensing method to effectively trap volatile organic compounds (VOCs), which have been absorbed in the hydrophobic film coated around the internal reflection element (IRE). The detection of VOCs in aqueous solutions was taken in the headspace of the aqueous solution. This method eliminates the long-term instability of hydrophobic film soaked in an aqueous solution and the potential spectral interference caused by the matrix of the aqueous solution. Thermal energy has been applied to the aqueous solution to assist in the evaporation of VOCs out of the aqueous matrix. By applying a cooling system to the IRE, the excess thermal energy can be removed leading to more stable IR signals. After examination of organic compounds with vapour pressure (Pv) ranging from 0.017 to 150 Torr, significant differences were found between IR signals from cooled and un-cooled systems. Because the thermal conductivity of the IRE used in IR detection is typically low; the efficiency in removing the thermal energy is limited. By heating the aqueous solutions to different temperatures, the IR signals showed that the sample temperature was limited to around 80 °C. The IR signal determination results for five different volatility organic compounds indicated that the optimal heating temperature was not necessary to match with the volatilities of organic compounds in cooling system. The linear regression coefficient (R2) of the standard curve for sample concentrations in the range 5-200 μg ml−1 was generally higher than 0.991 and the detection limit was around a few hundred ng ml−1, which was two to three times lower than that of un-cooled system.  相似文献   
60.
A novel Headspace Solid Phase Microextraction (HS‐SPME) protocol is proposed for the analysis of floral scent. Volatile compounds emitted from the flower are collected on a Carboxen/PDMS fiber for 1 hour, transferred to the GC, and analyzed by GC/MS. The method completely eliminates the use of organic solvents, does not require special instrumentation, and may readily be performed in the field without access to mains electricity and other energy supplies. The method is robust, sensitive, and reduces the sampling stress on the investigated plant. Since enzymatic reactions in living flowers may cause changes in the composition of emitted fragrance, dried rosemary (Rosmarinus officinalis L.) was used as a stable standard for the method development and optimization. In addition, grape wine was also suggested as homogeneous, bio‐compatible, and relatively stable standard of pronounced and typical scent for the same purpose. The optimized method was used for the comparative investigation of the fragrances emitted by two different species – Lathyrus vernus (L.) and Orchis pallens (L.). Several monoterpenes (C10 compounds) were found as the main fragrance components of lathyrus, while sesquiterpenes (C15 compounds) were typical for the orchid.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号