首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4550篇
  免费   247篇
  国内免费   856篇
化学   5097篇
晶体学   68篇
力学   22篇
综合类   50篇
数学   6篇
物理学   410篇
  2024年   7篇
  2023年   47篇
  2022年   90篇
  2021年   101篇
  2020年   129篇
  2019年   119篇
  2018年   109篇
  2017年   151篇
  2016年   160篇
  2015年   143篇
  2014年   170篇
  2013年   435篇
  2012年   220篇
  2011年   198篇
  2010年   168篇
  2009年   187篇
  2008年   222篇
  2007年   221篇
  2006年   216篇
  2005年   231篇
  2004年   217篇
  2003年   186篇
  2002年   688篇
  2001年   158篇
  2000年   114篇
  1999年   141篇
  1998年   104篇
  1997年   101篇
  1996年   87篇
  1995年   84篇
  1994年   74篇
  1993年   50篇
  1992年   63篇
  1991年   30篇
  1990年   26篇
  1989年   33篇
  1988年   29篇
  1987年   15篇
  1986年   18篇
  1985年   21篇
  1984年   10篇
  1983年   5篇
  1982年   15篇
  1981年   10篇
  1980年   7篇
  1978年   7篇
  1977年   6篇
  1976年   8篇
  1975年   4篇
  1973年   6篇
排序方式: 共有5653条查询结果,搜索用时 15 毫秒
741.
NaSn(OH)(edta)(H2O) is monoclinic, space groupP21/c, witha=9.747(3)Å,b=9.121(3)Å,c=16.430(6)Å, =98.69(4)°, Å3, andZ=4. The coordination environment of Sn(IV) is a capped octahedron. Sn–O distances range from 1.990(6)Å to 2.351(7)Å. Na(I) is five coordinated to three different edta molecules. Na–O distances range from 2.283(9)Å to 2.414(7)Å. The edta ligand presents the E, G/R conformation. The crystal structure is composed of sheets parallel to (001): inside a sheet Sn(OH)(edta) molecules are connected to each other by the Na(I) interactions.  相似文献   
742.
Capillary electrophoresis (CE) is a relatively new method of analytical separation having the advantages of high separation efficiency, requirement of a small sample amount, low operating cost, and fast separation time. CE is a separation method where the analyte migrates under an electric field due to a charge on the analyte. Hence, CE was unable to separate neutral analytes until the advent of micellar electrokinetic chromatography (MEKC). MEKC is performed with an addition of ionic micelles to an electrophoretic medium, where a portion of the analyte is incorporated into the micelle and has an apparent charge, which can be subject to electrophoretic separation. The migration velocity of the neutral analyte in MEKC depends on what portion of the analyte is incorporated into the micelle. Thus, the separation principle of MEKC is similar to that of chromatography, although the micelle corresponding to the stationary phase in chromatography is not stationary inside the capillary. The fundamental characteristics and theoretical treatments of the behavior of the analyte in MEKC were studied extensively by the author's group. MEKC has been established as one of the most popular separation modes in CE. This review describes how MEKC was developed and how it is useful as a method of analytical separation. © 2008 The Japan Chemical Journal Forum and Wiley Periodicals, Inc. Chem Rec 8: 291–301; 2008: Published online in Wiley InterScience ( www.interscience.wiley.com ) DOI 10.1002/tcr.20156  相似文献   
743.
744.
An analytical procedure has been developed for the separation of dioxouranium(VI), iron(III), copper(II), nickel(II), cobalt(II), cobalt(III), palladium(II), and thorium(IV) by MEKC using N,N'-ethylene bis(salicylaldimine) (H(2)SA(2)en) as a complexing reagent with total runtime <4.5 min. SDS was used as micellar medium at pH 8 with sodium tetraborate buffer (0.1 M). An uncoated fused-silica capillary with an effective length of 50 cm x 75 microm id was used with an applied voltage of 30 kV with photodiode array detection at 231 nm. Linear calibrations were obtained within 0.111-1000 microg/mL of each element with LODs within 37-325 ng/mL. The developed method was tested for analysis of uranium ore samples indicating its presence within 103-1789 microg/g with RSD within 0.79-1.87%. Likewise copper, nickel, and iron in their combined matrix were also simultaneously determined with RSD 0.4-1.6% (n = 6).  相似文献   
745.
We modelled the adsorption of benzene, fluorobenzene and meta-di-fluorobenzene on Cu(110) by Density Functional Theory. We found that the adsorption configuration depends on the coverage. At high coverage, benzene assumes a tilted position, while at low coverage a horizontal slightly distorted geometry is favoured. Functionalizing the benzene ring with one or two fluorine atoms weakens the bonding to the surface. A rotation is induced, which decreases the distance of the fluorine atom from the surface. STM simulations reveal that details about both, benzene adsorption geometry and fluorine position, can be only detected at short tip-surface distances.  相似文献   
746.
The title compound [Zn(btzb)2Cl2]·2H2O (1·2H2O, btzb = 1,2-bis(5-tetrazolyl)ben- zene) was synthesized in situ by the [2+3] cycloaddition reaction of phthalonitrile with NaN3 in water in the presence of ZnCl2 under refluxing conditions. 1·2H2O crystallizes in the monoclinic system, space group P2 1/c with a = 9.0119(18), b = 7.5566(15), c = 18.076(5)A, β= 114.67(2)°, V= 1118.6(4)A^3, Z = 2, Dc = 1.784 g/cm^3, T= 223(2) K, C16H16N16O2Cl2Zn, Mr = 600.74, F(000) = 608, μ(MoKα) = 1.393 mm^-1, S = 1.081, R = 0.0306 and wR = 0.0669 for 1896 observed reflections with I 〉 2σ(I). The Zn^2+ ion of 1 is coordinated by four N atoms from two btzb ligands and two Cl atoms, forming a distorted octahedral coordination geometry. A number of intermolecular hydrogen bon- ding interactions between molecules 1 and/or the solvated water molecules result in a 3D hydrogen-bonded structure. The luminescent property of 1·2H2O was also investigated.  相似文献   
747.
The title compound, 1,4-dimethyl-2,5-di { [2′-(3-pyridylmethylaminoformyl)phenoxyl]- methyl}benzene perchlorate (C36H36Cl2N4O12, Mr = 787.59), has been synthesized and structurally determined by single-crystal X-ray diffraction. The crystal crystallizes in the orthorhombic system, space group Pbca with a = 14.366(4), b = 15.159(4), c = 16.443(5)A, V = 3580.9(17)/A3 Z = 4, De = 1.461 g/cm^3, /t = 0.253 mm^-1, F(000) = 1640, R = 0.0618 and wR = 0.1525 for 1615 observed reflections (I 〉 2σ(I)). In the structure of the title compound, a two-dimensional supramolecular layer is formed via intermolecular hydrogen bonding interactions.  相似文献   
748.
A sensitive and selective liquid chromatography-tandem mass spectrometric (LC-MS/MS) method was developed and validated for the determination of sodium cromoglycate (SCG) in human plasma after a nasal dose of 10.4 mg sodium cromoglycate nasal spray, using pravastatin sodium as the internal standard. The method was validated over a linear range of 0.300-20.0 ng/mL. SCG and I.S. were extracted from 1.0 mL of heparinized plasma by C(18) solid-phase extraction cartridges using methanol as eluting solvent. The dried residue was reconstituted with 100 microL of mobile phase, and 10 microL was injected onto the LC-MS/MS system. Chromatographic separation was achieved on a C(18) column (250 x 4.6 mm i.d., 5 microm particle size) with a mobile phase of methanol-acetonitrile-water (containing 2 mmol/L ammonium acetate; 42.5:42.5:15, v/v/v) at a flow rate of 0.4 mL/min. The analytes were detected with a triple quad LC-MS/MS using ESI with positive ionization. Ions monitored in the multiple reaction monitoring mode were m/z 469.0 (precursor ion) to m/z 245.0 (product ion) for SCG and m/z 447.2 (precursor ion) to m/z327.1 (product ion) for pravastatin sodium (internal standard) The average recovery of SCG from human plasma was 94.88% and the lower limit of quantitation was 0.3 ng/mL. Results from a 3-day validation study demonstrated excellent precision and accuracy across the calibration range of 0.3-20 ng/mL. The method was successfully applied to the pharmacokinetic study of SCG in healthy Chinese volunteers. Copyright (c) 2008 John Wiley & Sons, Ltd.  相似文献   
749.
Recently, there have been reports regarding the presence of benzene in vitamin C drinks. This is caused by sodium benzoate and ascorbic acid (vitamin C), which can react together to induce benzene formation. While the headspace gas chromatography method is well known for the detection of benzene, there could be pitfalls in the process of benzene extraction. This study was performed to check if benzene could be generated under high-temperature incubation conditions. As a result, the amount of benzene detected by headspace-gas chromatography/mass spectrometry (HSGC/MS) was affected by temperature changes. As the temperature of the sample vial was increased, newly generated benzene from the headspace also increased, causing false-positive determination of benzene. Although 80 degrees C is generally accepted for the temperature of headspace sample vials, lower temperatures, such as 40 degrees C, minimize the false-positive identification of benzene. Considering that this minimization allows benzene to be quantified at around 5 ppb, this lower temperature should definitely be considered since benzene, which is formed in sodium benzoate, can appear in vitamin C drinks under certain circumstances. The proposed analysis method of benzene in vitamin C drinks by HSGC/MS at 40 degrees C is an accurate and universal method for the monitoring of benzene without false-positive identification.  相似文献   
750.
Bubble point temperatures (at 95.35 kPa) over the entire composition range were measured for the binary mixtures formed by ethyl benzene with: acetyl acetone, o-, and p-cresols, 1-hexanol, and tetraethoxysilane, employing a Swietoslawski type ebulliometer. Wilson equation was used to represent the measured liquid phase composition versus bubble point temperature data, and the computed values of the vapor phase mole fractions, activity coefficients, and excess Gibbs free energy were tabulated and briefly discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号