首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3311篇
  免费   654篇
  国内免费   381篇
化学   1649篇
晶体学   69篇
力学   862篇
综合类   38篇
数学   276篇
物理学   1452篇
  2024年   7篇
  2023年   51篇
  2022年   114篇
  2021年   129篇
  2020年   213篇
  2019年   152篇
  2018年   121篇
  2017年   137篇
  2016年   211篇
  2015年   127篇
  2014年   151篇
  2013年   293篇
  2012年   168篇
  2011年   169篇
  2010年   136篇
  2009年   180篇
  2008年   184篇
  2007年   187篇
  2006年   176篇
  2005年   150篇
  2004年   165篇
  2003年   133篇
  2002年   119篇
  2001年   124篇
  2000年   111篇
  1999年   104篇
  1998年   86篇
  1997年   64篇
  1996年   64篇
  1995年   65篇
  1994年   40篇
  1993年   30篇
  1992年   28篇
  1991年   25篇
  1990年   27篇
  1989年   21篇
  1988年   20篇
  1987年   8篇
  1986年   11篇
  1985年   6篇
  1984年   7篇
  1983年   3篇
  1982年   12篇
  1981年   2篇
  1980年   4篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1971年   4篇
  1957年   4篇
排序方式: 共有4346条查询结果,搜索用时 31 毫秒
101.
A thermodynamically consistent, large-strain, multi-phase field approach (with consequent interface stresses) is generalized for the case with anisotropic interface (gradient) energy (e.g. an energy density that depends both on the magnitude and direction of the gradients in the phase fields). Such a generalization, if done in the “usual” manner, yields a theory that can be shown to be manifestly unphysical. These theories consider the gradient energy as anisotropic in the deformed configuration, and, due to this supposition, several fundamental contradictions arise. First, the Cauchy stress tensor is non-symmetric and, consequently, violates the moment of momentum principle, in essence the Herring (thermodynamic) torque is imparting an unphysical angular momentum to the system. In addition, this non-symmetric stress implies a violation of the principle of material objectivity. These problems in the formulation can be resolved by insisting that the gradient energy is an isotropic function of the gradient of the order parameters in the deformed configuration, but depends on the direction of the gradient of the order parameters (is anisotropic) in the undeformed configuration. We find that for a propagating nonequilibrium interface, the structural part of the interfacial Cauchy stress is symmetric and reduces to a biaxial tension with the magnitude equal to the temperature- and orientation-dependent interface energy. Ginzburg–Landau equations for the evolution of the order parameters and temperature evolution equation, as well as the boundary conditions for the order parameters are derived. Small strain simplifications are presented. Remarkably, this anisotropy yields a first order correction in the Ginzburg–Landau equation for small strains, which has been neglected in prior works. The next strain-related term is third order. For concreteness, specific orientation dependencies of the gradient energy coefficients are examined, using published molecular dynamics studies of cubic crystals. In order to consider a fully specified system, a typical sixth order polynomial phase field model is considered. Analytical solutions for the propagating interface and critical nucleus are found, accounting for the influence of the anisotropic gradient energy and elucidating the distribution of components of interface stresses. The orientation-dependence of the nonequilibrium interface energy is first suitably defined and explicitly determined analytically, and the associated width is also found. The developed formalism is applicable to melting/solidification and crystal-amorphous transformation and can be generalized for martensitic and diffusive phase transformations, twinning, fracture, and grain growth, for which interface energy depends on interface orientation of crystals from either side.  相似文献   
102.
To decrease the water pollution of textile industries with a large amount of toxic and non‐biodegradable colored dye effluents, an efficient technique is required to safely remove harmful pollutants. In this paper, the reaction between azo dyes and NaBH4 catalyzed by nanoparticles (NPs) thin films has been studied. We report insitu degradation of methyl orange (MO) and methyl red (MR) by using Pt‐based thin films monitored by UV–Vis spectroscopy. We have synthesized different thin films such as Pt, PtPd, PtFeFe2O3, PtNi and PtAu films from Pt organometallic precursor in the MO and MR medium (dye degradation and NPs formation is happened simultaneously) and activity of these films were compared in the complete degradation of MO and MR dyes. Rate constants for the catalyzed reactions have been determined. PtPd NPs thin film has shown the highest rate constant for the degradation of MO and MR within only a few seconds due to its well‐ordered structure. Furthermore, the effect of presence of MO on the morphology of NPs was investigated.  相似文献   
103.
A simple and effective strategy is described for the synthesis of Pd–CdS nanopowder by the reduction of an organopalladium(II) complex, [PdCl2(cod)] (cod = cis ,cis ‐1,5‐cyclooctadiene), in the presence of CdS quantum dots (QDs) at a toluene–water interface. We investigated the impact of addition of CdS QDs on catalytic activity of Pd nanoparticles (NPs). The Pd–CdS nanopowder functions as an efficient catalyst for Suzuki–Miyaura reactions for the formation of carbon–carbon bonds. There is a high electron density on Pd NPs and due to their high electron affinity they behave as an electron scavenger from CdS increasing the rate of oxidative addition, which is the rate‐determining step of the catalytic cycle, and, just as we expect, the C─C coupling reaction with the Pd–CdS nanopowder is faster and occurs in less time than that with Pd nanocatalysts. Compared to classical reactions, this method consistently has the advantages of short reaction times, high yields in a green solvent, reusability of the catalyst without considerable loss of catalytic activity and low cost, and is a facile method for the preparation of the catalyst.  相似文献   
104.
This paper is dedicated to the numerical simulation of nuclear components (cores and steam generators) by fictitious domain methods. The fictitious domain approach consists in immersing the physical domain under study in a Cartesian domain, called the fictitious domain, and in performing the numerical resolution on this fictitious domain. The calculation times are then efficiently reduced by the use of fast solvers. In counterpart, one has to handle with an immersed boundary, generally non‐aligned with the Cartesian mesh, which can be non‐trivial. The two fictitious domain methods compared here on industrial simulations and developed by Ramière et al. deal with an approximate immersed interface directly derived from the uniform Cartesian mesh. All the usual immersed boundary conditions (Dirichlet, Robin, Neumann), possibly mixed, are handled through a unique formulation of the fictitious problem. This kind of approximation leads to first‐order methods in space that exhibit a good ratio of the precision of the approximate solution over the CPU time, which is very important for industrial simulations. After a brief recall of the fictitious domain method with spread interface (Ramière et al., CMAME 2007) and the fictitious domain method with immersed jumps (Ramière et al., JCP 2008), we will focus on the numerical results provided by these methods applied to the energy balance equation in a steam generator. The advantages and drawbacks of each method will be pointed out. Generally speaking, the two methods confirm their very good efficiency in terms of precision, convergence, and calculation time in an industrial context. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
105.
106.
Composites comprised of chitosan (CS) and multiwalled carbon nanotubes (MWCNTs) were fabricated by milling and ultrasonication dispersion methods. Scanning electron microscopy images showed homogeneous dispersion of MWCNTs throughout the CS matrix for samples prepared by either ultrasonication or milling methods. Further, the crystallinity of the CS component was found to decrease with the addition of MWCNTs, although the decomposition temperature and the storage modulus (E′) of the samples were improved. The decomposition temperature for the composite prepared by milling was 7°C higher than that by the ultrasonication. Meanwhile, the E′ decreased relatively slowly with temperature in the dynamic mechanical analysis measurements. In addition, IR analysis implied an interaction between CS and MWCNTs, which likely originated from hydrogen bonds between the amino, hydroxyl, and carboxyl groups of the two components. Compared with the ultrasonication, milling was more effective to promote the formation of the hydrogen bonds between CS and the MWCNTs and thus enhance the thermal stability of CS.  相似文献   
107.
This paper develops methods for interface‐capturing in multiphase flows. The main novelties of these methods are as follows: (a) multi‐component modelling that embeds interface structures into the continuity equation; (b) a new family of triangle/tetrahedron finite elements, in particular, the P1DG‐P2(linear discontinuous between elements velocity and quadratic continuous pressure); (c) an interface‐capturing scheme based on compressive control volume advection methods and high‐order finite element interpolation methods; (d) a time stepping method that allows use of relatively large time step sizes; and (e) application of anisotropic mesh adaptivity to focus the numerical resolution around the interfaces and other areas of important dynamics. This modelling approach is applied to a series of pure advection problems with interfaces as well as to the simulation of the standard computational fluid dynamics benchmark test cases of a collapsing water column under gravitational forces (in two and three dimensions) and sloshing water in a tank. Two more test cases are undertaken in order to demonstrate the many‐material and compressibility modelling capabilities of the approach. Numerical simulations are performed on coarse unstructured meshes to demonstrate the potential of the methods described here to capture complex dynamics in multiphase flows. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
108.
Elaborate chemical design is of utmost importance in order to slow down the relaxation dynamics in single‐molecule magnets (SMMs) and hence improve their potential applications. Much interest was devoted to the study of distinct relaxation processes related to the different crystal fields of crystallographically independent lanthanide ions. However, the assignment of the relaxation processes to specific metal sites remains a challenging task. To address this challenge, a new asymmetric Dy2 SMM displaying a well‐separated two‐step relaxation process with the anisotropic centers in fine‐tuned local environments was elaborately designed. For the first time a one‐to‐one relationship between the metal sites and the relaxation processes was evidenced. This work sheds light on complex multiple relaxation and may direct the rational design of lanthanide SMMs with enhanced magnetic properties.  相似文献   
109.
In this paper, we propose a new methodology for numerically solving elliptic and parabolic equations with discontinuous coefficients and singular source terms. This new scheme is obtained by clubbing a recently developed higher‐order compact methodology with special interface treatment for the points just next to the points of discontinuity. The overall order of accuracy of the scheme is at least second. We first formulate the scheme for one‐dimensional (1D) problems, and then extend it directly to two‐dimensional (2D) problems in polar coordinates. In the process, we also perform convergence and related analysis for both the cases. Finally, we show a new direction of implementing the methodology to 2D problems in cartesian coordinates. We then conduct numerous numerical studies on a number of problems, both for 1D and 2D cases, including the flow past circular cylinder governed by the incompressible Navier–Stokes equations. We compare our results with existing numerical and experimental results. In all the cases, our formulation is found to produce better results on coarser grids. For the circular cylinder problem, the scheme used is seen to capture all the flow characteristics including the famous von Kármán vortex street. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
110.
A family of five isostructural butterfly complexes with a tetranuclear [Ln4] core of the general formula [Ln4(LH)22‐η1η1Piv)(η2‐Piv)(μ3‐OH)2]?x H2O?y MeOH?z CHCl3 ( 1 : Ln=DyIII, x=2, y=2, z=0; 2 : Ln=TbIII, x=0, y=0, z=6; 3 : Ln=ErIII, x=2, y=2, z=0; 4 : Ln=HoIII, x=2, y=2, z=0; 5 : Ln=YbIII, x=2, y=2, z=0; LH4=6‐{[bis(2‐hydroxyethyl)amino]methyl}‐N′‐(2‐hydroxy‐3‐methoxybenzylidene)picolinohydrazide; PivH=pivalic acid) was isolated and characterized both structurally and magnetically. Complexes 1 – 5 were probed by direct and alternating current (dc and ac) magnetic susceptibility measurements and, except for 1 , they did not display single‐molecule magnetism (SMM) behavior. The ac magnetic susceptibility measurements show frequency‐dependent out‐of‐phase signals with one relaxation process for complex 1 and the estimated effective energy barrier for the relaxation process was found to be 49 K. We have carried out extensive ab initio (CASSCF+RASSI‐SO+SINGLE_ANISO+POLY_ANISO) calculations on all the five complexes to gain deeper insights into the nature of magnetic anisotropy and the presence and absence of slow relaxation in these complexes. Our calculations yield three different exchange coupling for these Ln4 complexes and all the extracted J values are found to be weakly ferro/antiferromagentic in nature (J1=+2.35, J2=?0.58, and J3=?0.29 cm?1 for 1 ; J1=+0.45, J2=?0.68, and J3=?0.29 cm?1 for 2 ; J1=+0.03, J2=?0.98, and J3=?0.19 cm?1 for 3 ; J1=+4.15, J2=?0.23, and J3=?0.54 cm?1 for 4 and J1=+0.15, J2=?0.28, and J3=?1.18 cm?1 for 5 ). Our calculations reveal the presence of very large mixed toroidal moment in complex 1 and this is essentially due to the specific exchange topology present in this cluster. Our calculations also suggest presence of single‐molecule toroics (SMTs) in complex 2 . For complexes 3 – 5 on the other hand, the transverse anisotropy was computed to be large, leading to the absence of slow relaxation of magnetization. As the magnetic field produced by SMTs decays faster than the normal spin moments, the concept of SMTs can be exploited to build qubits in which less interference and dense packing are possible. Our systematic study on these series of Ln4 complexes suggest how the ligand design can help to bring forth such SMT characteristics in lanthanide complexes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号