首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6189篇
  免费   976篇
  国内免费   1319篇
化学   5619篇
晶体学   126篇
力学   367篇
综合类   89篇
数学   213篇
物理学   2070篇
  2024年   16篇
  2023年   99篇
  2022年   308篇
  2021年   430篇
  2020年   332篇
  2019年   278篇
  2018年   229篇
  2017年   315篇
  2016年   385篇
  2015年   346篇
  2014年   447篇
  2013年   651篇
  2012年   469篇
  2011年   486篇
  2010年   324篇
  2009年   445篇
  2008年   440篇
  2007年   375篇
  2006年   325篇
  2005年   288篇
  2004年   247篇
  2003年   198篇
  2002年   160篇
  2001年   120篇
  2000年   94篇
  1999年   97篇
  1998年   90篇
  1997年   75篇
  1996年   48篇
  1995年   47篇
  1994年   36篇
  1993年   59篇
  1992年   47篇
  1991年   29篇
  1990年   21篇
  1989年   20篇
  1988年   27篇
  1987年   14篇
  1986年   12篇
  1985年   16篇
  1984年   6篇
  1983年   6篇
  1982年   5篇
  1981年   5篇
  1980年   2篇
  1979年   6篇
  1973年   2篇
  1971年   2篇
  1959年   1篇
  1957年   1篇
排序方式: 共有8484条查询结果,搜索用时 15 毫秒
991.
We report a synchrotron energy-dispersive X-ray diffraction study of the novel high explosive 1,1-diamino-2,2-dinitroethylene at high pressures and high temperatures. Pressure was generated using a Paris–Edinburgh cell to employ larger sample volumes. High temperatures were created using a resistive graphite cylinder surrounding the sample. The PT phase diagram was explored in the 3.3 GPa pressure range and in the ~ 400°C temperature range. We believe that the sample commenced in the α-phase and then ended up in an amorphous phase when the temperature increased beyond 280°C near 2 GPa, which we believe to be the γ-phase. Further pressure and temperature cycling suggests that the sample transformed reversibly into and out of the amorphous phase near the phase line.  相似文献   
992.
993.
In this paper, we present a novel macro-scale analytical model that allows the prediction of how the population size will change in a cell culture starting from an arbitrary initial value. General biological knowledge and some empirical observations are used to design an agent-based discrete-time model at the meso-scale, which then serves as a simulation environment and provides the necessary insights for the development of the continuous-time, differential equation-based, compact macro-scale model. This model can be parameter-tuned and employed for predicting how the population size changes. The paper gives a procedure for the estimation of parameter values of the macro-scale model via some simple tests to be conducted on the cell culture at hand. The performance of the macro-scale model is validated via simulation results that show how well the macro-scale model captures the population dynamics as obtained from the meso-scale model, while the biological plausibility of the meso-scale model is taken for granted.  相似文献   
994.
The wall is the last frontier of a plant cell involved in modulating growth, development and defense against biotic stresses. Cellulose and additional polysaccharides of plant cell walls are the most abundant biopolymers on earth, having increased in economic value and thereby attracted significant interest in biotechnology. Cellulose biosynthesis constitutes a highly complicated process relying on the formation of cellulose synthase complexes. Cellulose synthase (CesA) and Cellulose synthase-like (Csl) genes encode enzymes that synthesize cellulose and most hemicellulosic polysaccharides. Arabidopsis and rice are invaluable genetic models and reliable representatives of land plants to comprehend cell wall synthesis. During the past two decades, enormous research progress has been made to understand the mechanisms of cellulose synthesis and construction of the plant cell wall. A plethora of cesa and csl mutants have been characterized, providing functional insights into individual protein isoforms. Recent structural studies have uncovered the mode of CesA assembly and the dynamics of cellulose production. Genetics and structural biology have generated new knowledge and have accelerated the pace of discovery in this field, ultimately opening perspectives towards cellulose synthesis manipulation. This review provides an overview of the major breakthroughs gathering previous and recent genetic and structural advancements, focusing on the function of CesA and Csl catalytic domain in plants.  相似文献   
995.
H.A. Mohamed 《哲学杂志》2013,93(30):3467-3486
This work investigates dependence of the short-circuit current density, open-circuit voltage, fill factor and efficiency of a thin film CdS/PbS solar cell on thickness of transparent conductive oxide (TCO) layer, thickness of window layer (CdS), concentration of uncompensated acceptors (width of space-charge region), carrier lifetime in PbS and the reflectivity from metallic back contact. The effect of optical losses, front and rear recombination losses as well as the recombination losses on space-charge region are also considered in this study. As a result, by thinning the front contact layer indium tin oxide from 400 to 100 nm and window layer (CdS) from 200 to 100 nm it is possible to reduce the optical losses from 32 to 20%. The effect of electron lifetime on the internal and external quantum efficiency can be neglected at high width of the space-charge region. The maximum current density of 18.4 mA/cm2 is achieved at wide space-charge region (concentration of uncompensated acceptors = 1015 cm?3) and the longest lifetime (τn = 10?6 s) where the optical and recombination losses are about 55%. The maximum efficiency of 5.17%, maximum open-circuit voltage of 417 mV and approximately fixed fill factor of 74% are yielded at optimum conditions such as: electron lifetime = 10?6 s; concentration of uncompensated acceptors = 1016 cm?3; thickness of TCO = 100 nm; thickness of CdS = 100 nm; velocity of surface and rear recombination = 107 cm/s and thickness of absorber layer = 3 μm. When the reflectance from the back contact is 100%, the cell parameters improve and the cell efficiency records a value of 6.1% under the above conditions.  相似文献   
996.
In a segmented-in-series solid oxide fuel cell (SIS-SOFC), an interconnect (IC) provides electrical contact and sealing between the anode of one cell and the cathode of the next. A metallic silver-glass composite (SGC) is considered a promising alternative to ceramic IC materials in SIS-SOFCs. In this work, a simulation study is performed on a tubular SIS-SOFC to assess the effectiveness of the SGC-IC design and to predict the SOFC performance characteristics for various IC geometries and conductivities. The developed model provides detailed information on cell behavior, such as the internal resistance, the potential/current distribution, and the local gas species concentration. The results demonstrate that the SGC material greatly reduces a potential drop across the IC film. Thus, it provides the following substantial advantages over conventional ceramic IC materials: (i) increased power density and (ii) a larger degree of flexibility in the cell design. Moreover, the validation test, i.e., comparison of the simulated results with the experimental data, indicates that the model could serve as a valuable tool for design optimization to achieve the required SOFC performance.  相似文献   
997.
We report the effect of Cr impurity barrier on Cu(In,Ga)Se2 (CIGS) thin-film solar cells prepared on flexible substrates. The Cr films with varying the thickness (tCr) were deposited on stainless steel substrates using direct-current magnetron sputtering. The solar cell performance was improved by increasing tCr since the diffusion of Fe impurities from the substrate to CIGS was suppressed. Although the elemental composition, grain size, and strain of CIGS film showed little change with varying Fe content, the fill factor and the short-circuit current density increased as decreasing Fe. The Fe increased the series resistance, shunt paths, and saturation current density. The reduction of Fe caused a steeper bandgap grading in CIGS which enhances current collection due to higher electric fields in bulk CIGS. CIGS solar cells with 1000 nm-thick Cr barrier showed the best conversion efficiency of 9.05%.  相似文献   
998.
The linewidth of electromagnetically induced transparency(EIT) in a coated Rb vapor cell was studied under a magnetic field gradient.The nonlinear broadening of the EIT linewidth with the magnetic field gradient was observed.It was found that the motional averaging of the field gradient was more pronounced at higher laser intensities and larger beam sizes.In the same regime,there was a small linewidth decrease with the increasing magnetic field gradient.We have established a Monte-Carlo model,which gave results in good qualitative agreement with our experiment.Physics pictures for the above phenomena were also suggested.These results provide an understanding of the EIT linewidth behavior under motional averaging,and should be useful for applications in quantum optics and metrology based on coated vapor cells.  相似文献   
999.
A single concentrator solar cell model with a heat sink is established to simulate the thermal performance of the system by varying the number, height, and thickness of fins, the base thickness and thermal resistance of the thermal conductive adhesive. Influence disciplines of those parameters on temperatures of the solar cell and heat sink are obtained. With optimized number, height and thickness of fins, and the thickness values of base of 8, 1.4 cm, 1.5 mm, and 2 mm, the lowest temperatures of the solar cell and heat sink are 41.7℃ and 36.3℃ respectively. A concentrator solar cell prototype with a heat sink fabricated based on the simulation optimized structure is built. Outdoor temperatures of the prototype are tested. Temperatures of the solar cell and heat sink are stabilized with time continuing at about 37℃-38℃ and 35℃-36℃ respectively, slightly lower than the simulation results because of effects of the wind and cloud. Thus the simulation model enables to predict the thermal performance of the system, and the simulation results can be a reference for designing heat sinks in the field of single concentrator solar cells.  相似文献   
1000.
This article presents the results of in situ X-ray powder diffraction, Raman spectroscopy, and electrical impedance spectroscopy of the α-phase of Bi2O3, at 0.1 MPa in the temperature range below and above the α–δ-phase transition. This work demonstrated subtle nonlinear temperature variations of the cell parameters, of the hard-mode Raman shift, and of the activation energy of electrical conductivity in the temperature range about 100–120°C below the α–δ phase transition temperature T Tr ≈ 725°C in Bi2O3. At T < 600°C, the linear variation of the inverse dielectric susceptibility (χ ?1) correlates well with the hard mode frequency shift Δ(ω 2) of Raman A1g mode as Δ(χ ?1)/Δ(ω 2) ≈ 5.5 × 10?7 cm2. A structural model describing the mechanism of O2? anion distribution and electric dipole disordering in the vicinity of T Tr is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号