首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   288篇
  免费   26篇
  国内免费   38篇
化学   269篇
晶体学   5篇
力学   15篇
综合类   1篇
数学   10篇
物理学   52篇
  2023年   2篇
  2022年   7篇
  2021年   5篇
  2020年   11篇
  2019年   9篇
  2018年   5篇
  2017年   7篇
  2016年   13篇
  2015年   11篇
  2014年   6篇
  2013年   25篇
  2012年   11篇
  2011年   15篇
  2010年   13篇
  2009年   13篇
  2008年   17篇
  2007年   19篇
  2006年   20篇
  2005年   19篇
  2004年   18篇
  2003年   13篇
  2002年   10篇
  2001年   6篇
  2000年   9篇
  1999年   4篇
  1998年   10篇
  1997年   7篇
  1996年   6篇
  1995年   5篇
  1994年   7篇
  1993年   11篇
  1992年   6篇
  1991年   3篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1982年   2篇
  1981年   2篇
排序方式: 共有352条查询结果,搜索用时 15 毫秒
261.
Healable silicone materials have great technical impact in coatings, smart actuators, and flexible electronics, however, current healable silicone materials lack mechanical tunability. Herein, we designed and synthesized a new type of healable silicone through hydrogen‐bond assisted multiphase assembly of siloxane oligomers. Besides the enhanced mechanical strength, unique water‐enhanced healing was observed in the polymer network which is due to the reversible dissociation/association of multivalent hydrogen bonds in the presence of water.  相似文献   
262.
《先进技术聚合物》2018,29(2):934-940
A novel heat‐curable silicone rubber (MCSR/Si‐PAMAM) was prepared by using siloxane polyamidoamine (Si‐PAMAM) dendrimers as cross‐linkers and polysiloxane containing γ‐chloropropyl groups as gums. The chemical cross‐linking occurs through the reaction between Si‐PAMAM dendrimers and polysiloxane containing γ‐chloropropyl groups. The effect of various amounts of cross‐linkers on mechanical properties of MCSR/Si‐PAMAM was discussed in this paper. MCSR/Si‐PAMAM exhibits favorable mechanical properties with a tensile strength of 10.06 MPa and a tear strength of 47.9 kN/m when the molar ratio r of [N‐H]/[CH2CH2CH2Cl] is 1:1. These excellent mechanical properties can be attributed to the formation of concentrative cross‐linking from Si‐PAMAM dendrimers in the cross‐linking networks, along with the introduction of Si–O–Si units in the internal structure of dendrimers. The introduction of Si–O–Si units reduces the steric hindrance of molecular structure, which facilitates the N–H bonds in the interior layers of dendrimers to react with γ‐chloropropyl groups. In addition, thermogravimetric analysis results indicate that MCSR/Si‐PAMAM is thermally stable even at high temperatures in a nitrogen atmosphere. Differential scanning calorimetry analysis reveals that the glass transition peak of MCSR/Si‐PAMAM is not identified in the temperature range −150 to −30°C, only a melting endothermic peak at −40°C.  相似文献   
263.
Electrolytes based on a poly(ε-caprolactone) (PCL)/siloxane organic/inorganic host framework doped with lithium triflate (LiCF3SO3) were synthesised through the sol-gel process. In this biohybrid matrix short PCL chains are covalently bonded via urethane linkages to the siliceous network. Samples with salt composition n (molar ratio of PCL repeat units per Li+ ion) ranging from ∞ to 0.5 were investigated. All the ormolyte materials analyzed are amorphous. Xerogels with n > 0.5 are thermally stable up to about 300°C. The most conducting ormolyte of the series is that with n = 0.5 (1.6×10−7 and 3.2×10−5 Ω−1 cm−1 at 25 and 100°C, respectively). This sample is electrochemically stable between −1 and 6 V versus Li+.  相似文献   
264.
Poly(lithium propionate methyl siloxane )as a single-ion carrier source was synthesized. The crosslinked film showed lower lithium ionic conductivity at room temperature (about 10~(-10) S/cm). However,the lithium ionic conductivity was obviously increased by blending with high polar polymers such as polyethylene oxide, poly (methylsiloxane - co- ethylene oxide) and poly (methylsiloxane- g- ethylene oxide). In the blend system a high conductivity of 10~(-7)-10~(-5) Scm~(-1) at room temperature was obtained and the single-ion conductivity was deeply influenced by the content of the poly (lithium propionate methyl siioxane). The dc ionic conductivity of the flexible crosslinked films is more stable over time.  相似文献   
265.
高分子冠醚毛细管柱的性能研究   总被引:2,自引:0,他引:2  
傅若农  黄载福 《分析化学》1993,21(4):379-383
本文报道了3种新的聚硅氧烷侧链冠醚作气相色谱固定液,并涂渍成弹性石英毛细管柱,这种毛细管柱具有优良的色谱性能,它们具有柱效高,热稳定性好,选择性强的特点,适于分离各种异构体。  相似文献   
266.
利用DSC、DMA、TEM和XPS对[PSF-PDMS-PHS]n/PSF共混物的相容性及表面组成进行了研究.结果表明,PDMS在共混物表面的富集与PSF均聚物和[PSF-PDMS-PHS]n中硬段的相容性有关;PDMS在相容的共混物体系表面的富集与对应的多嵌段共聚物组成基本相近;不相容共混物体系表面PDMS的富集程度相对较高,当共混物本体中有机硅含量从1%增至5%,表面层PDMS的含量迅速增加,可达到嵌段共聚物中PDMS的含量.  相似文献   
267.
Thin films of SiPc(OH)2 (Pc = phthalocyanine) were formed epitaxially on the (001) surface of mica by vacuum deposition and were then polymerized by heat treatment. The molecular packing of the SiPc(OH)2 was determined by electron diffraction and high-resolution electron microscopy as triclinic${\rm P\bar 1} $ having dimensions a = 0.727, b = 1.307, c = 0.688 nm, α = 102.5, β = 104.2, and γ = 97.4°. This monomer crystal grows with its c-axis parallel to the a-axis of the substrate mica and its bc-plane parallel to the (001) surface of mica. By heat treatment at 320°C, the SiPc(OH)2 polymerized with the c-axis of the polymer parallel to the c-axis of the monomer. At 420°C, the c-axis of the polymer became parallel to the a*-axis of the monomer (i.e., perpendicular to the film surface). From high-resolution electron microscopy of partially polymerized specimens, the polymerization was shown to start at the edges of small monomer crystals. This may be considered to be due to the volume expansion during the polymerization. © 1993 John Wiley & Sons, Inc.  相似文献   
268.
The thermolysis under argon of various polysiloxane resins containing D, T, DH, or TH units was investigated using thermogravimetric analysis combined with mass spectroscopy (TG/MS analysis) and solid-state 29Si-NMR. Redistribution reactions involving the exchange of Si? C/Si? O bonds or Si? H/Si? O bonds were evidenced in addition to the exchange of Si? O/Si? O bonds reported to date. These reactions significantly modify the initial siloxane units and lead to an escape of volatile silanes or siloxanes. The exchange of Si? H/Si? O bonds takes place at lower temperatures (300°C) than the exchange of Si? C/Si? O bonds (500°C).  相似文献   
269.
The hydrogen bonding interaction of formic acid-, formaldehyde-, formylfluoride-nitrosyl hydride complexes was investigated by the density functional theory (DFT) and ab inito method in conjunction with 6-311++G(2d,2p) basis set. The geometries, vibrational frequencies and interaction energies of the complexes were calculated by both standard and CP-corrected methods respectively. Moreover, G3B3 method was employed to estimate the interaction energies. There are C--H…O, N--H…O, N--H…F blue-shifted H-bonds and red-shifted O----H…O H-bond in the complexes. Electron density redistribution and rehybridization contribute to the N--H and C--H blue shifts. All geometric reorganizations contribute to the N--H blue shifts and partial geometric reorganizations contribute to the C--H blue shifts. The geometric reorganizations of the complex C except ZH(5)-O(4)-C(1) contribute to the O----H red shift. For the N--H blue shifts, the effect of r(N--O) variation on the N--H blue shifts is larger than that of ZH-N-O variation. Rehybridization plays a dominant role in the degree of N--H blue shifts, whereas the electron density redistribution contributes more to the degree of C--H blue shifts than the other effects do.  相似文献   
270.
Ab initio molecular orbital and density functional theory (DFT) in conjunction with different basis sets calculations were performed to study the C? H…O red‐shifted and N? H…π blue‐shifted hydrogen bonds in HNO? C2H2 dimers. The geometric structures, vibrational frequencies and interaction energies were calculated by both standard and counterpoise (CP)‐corrected methods. In addition, the G3B3 method was employed to calculate the interaction energies. The topological and natural bond orbital (NBO) analysis were investigated the origin of N? H…π blue‐shifted hydrogen bond. From the NBO analysis, the electron density decrease in the σ* (N? H) is due to the significant electron density redistribution effect. The blue shifts of the N? H stretching frequency are attributed to a cooperative effect between the rehybridization and electron density redistribution. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2006  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号