首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   221篇
  免费   58篇
  国内免费   53篇
化学   265篇
晶体学   7篇
力学   2篇
物理学   58篇
  2024年   1篇
  2023年   1篇
  2022年   3篇
  2021年   7篇
  2020年   3篇
  2019年   9篇
  2018年   10篇
  2017年   9篇
  2016年   17篇
  2015年   39篇
  2014年   31篇
  2013年   44篇
  2012年   42篇
  2011年   29篇
  2010年   10篇
  2009年   10篇
  2008年   9篇
  2007年   7篇
  2006年   4篇
  2005年   9篇
  2004年   5篇
  2003年   5篇
  2002年   5篇
  2001年   2篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1996年   4篇
  1995年   2篇
  1994年   3篇
  1993年   1篇
  1991年   3篇
  1987年   2篇
排序方式: 共有332条查询结果,搜索用时 15 毫秒
211.
Poly(n‐isopropylacrylamide) (PNIPAAm) and its nanocomposite with exfoliated montmorillonite (MMT) were prepared by soap‐free emulsion polymerization and individually applied to gel the electrolyte systems for the dye‐sensitized solar cells (DSSCs). Each exfoliated MMT nanoplatelet had a thickness of ~ 1 nm, carried ~ 1.8 cation/nm2, and acted like a two‐dimensional electrolyte. The DSSC with the LiI/I2/tertiary butylpyridine electrolyte system gelled by this polymer nanocomposite had higher short‐circuit current density (Jsc) compared to that gelled by the neat PNIPAAm. The former has a Jsc of 12.6 mA/cm2, an open circuit voltage (Voc) of 0.73 V, and a fill factor (FF) of 0.59, which harvested 5.4% electricity conversion efficiency (η) under AM 1.5 irradiation at 100 mW/cm2, whereas the latter has Jsc = 7.28 mA/cm2, Voc = 0.72 V, FF = 0.60, and η = 3.17%. IPCE of the nanocomposite‐gelled DSSC were also improved. Electrochemical impedance spectroscopy of the DSSCs revealed that the nanocomposite‐gelled electrolytes significantly decreased the impedances in three major electric current paths of DSSCs, that is, the resistance of electrolytes and electric contacts, impedance across the electrolytes/dye‐coated TiO2 interface, and Nernstian diffusion within the electrolytes. The results were also consistent with the increased molar conductivity of nanocomposite‐gelled electrolytes. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 47–53, 2008  相似文献   
212.
This study develops a series of titanium oxide electrode‐based N719 dye‐sensitized solar cells (DSSCs) using quaternized ammonium iodide containing main‐chain and star‐shaped polyfluorene (MPF‐E and SPF‐E) electrolyte solutions. The electrochemical impedance and photovoltaic properties of the polyfluorene electrolyte‐based DSSCs were studied and compared to those of the poly(ethylene oxide) (PEO) electrolyte‐based DSSCs. As with the PEO electrolyte‐based DSSCs, the recombination impedance increased with increase in the polymer content for the MPF‐E electrolyte‐based DSSCs, whereas the photovoltaic performance did otherwise. Nevertheless, the reduction in the photovoltaic properties was not significant for the SPF‐E electrolyte‐based DSSCs. The electrochemical impedance and photovoltaic properties of the different polymer‐based DSSCs are also discussed as a function of the polymer concentration. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
213.
Dye‐sensitized solar cells (DSSCs) have attracted considerable attention in recent years as they offer the possibility of low‐cost conversion of photovoltaic energy. This account focuses on recent advances in molecular design and technological aspects of sensitizers based on metal complexes, metal‐free organics and tetrapyrrolic compounds which include porphyrins, phthalocyanines as well as corroles. Special attention has been paid to the design principles of these dyes, and co‐sensitization, an emerging technique to extend the absorption range, is also discussed as a way to improve the performance of the device. This account also focuses on recent advances of efficient ruthenium sensitizers as well as other metal complexes and their applications in DSSCs. Recent developments in the area of metal‐free organic and tetrapyrrolic sensitizers are also discussed. DOI 10.1002/tcr.201100044  相似文献   
214.
215.
Hybrid Pt(platinum)/carbon nanopatterns with an extremely low loading level of Pt catalysts derived from block copolymer templates as an alternative type of counter electrodes (CEs) in dye‐sensitized solar cells (DSSCs) are proposed. DSSCs employing hybrid Pt/carbon with tailored configuration as CEs exhibit higher short‐circuit current and conversion efficiencies as well as stability with a lapse of time compared with conventional cells on the basis of sputtered Pt thin films, evidencing that the new class of hybrid nanostructures possess high potential for cost‐effective electrodes in energy conversion devices.

  相似文献   

216.
The stability of platinized catalytic electrodes prepared by thermal decomposition of hexachloroplatinic acid was investigated. The platinum on the electrode did not dissolve in the presence of the electrolyte containing an iodide/triiodide redox couple, even under anodic bias. The electrocatalytic activity of platinized catalytic electrodes sealed in a cell with oxygen‐free electrolyte did not decrease within 23 weeks. However, the charge transfer resistance value of platinized catalytic electrodes increased tenfold when the electrodes were heated at 150° for 15 min in air during the sealing process and doubled when the electrodes were reused. The XPS analysis results showed that part of the platinum catalyst on the surface of the electrode was transformed to Pt[II] and Pt[IV] during the thermal sealing process, which led to the decrease of catalytic activity of the platinized catalytic electrodes for the reduction of triiodide. A large amount of inactive iodine absorbed on the surface of the reused electrode, which was confirmed by XPS, also decreased the electrocatalytic activity of the electrodes. The electrocatalytic activity of reused electrodes can be recovered by heating again at 390 °C or removing the platinum oxide and inactive iodine by the electrochemical method. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
217.
Considering different solar dyes configuration, four novel metal‐free organic dyes based on phenoxazine as electron donor, thiophene and cyanovinylene linkers as the ‐conjugation bridge and cyanoacrylic acid as electron acceptor were designed to optimize open circuit voltage and short circuit current parameters and theoretically inspected. Density functional theory and time‐dependent density functional theory calculations were used to study frontier molecular orbital energy states of the dyes and their optical absorption spectra. The results indicated that D2‐4 dyes can be suitable candidates as sensitizers for application in dye sensitized solar cells and among these three dyes, D3 showed a broader and more bathochromically shifted absorption band compared to the others. The dye also showed the highest molar extinction coefficient. This work suggests optimizing the configuration of metal‐free organic dyes based on simple D‐ ‐A configuration containing alkyl chain as substitution, starburst conformation, and symmetric double D‐ ‐A chains would produce good photovoltaic properties.  相似文献   
218.
219.
220.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号