首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   2篇
  国内免费   3篇
化学   11篇
物理学   3篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2019年   2篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2011年   1篇
  2010年   1篇
  2006年   1篇
  2005年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
Nowadays, the use of hybrid structures and multi-component materials is gaining ground in the fields of environmental protection, water treatment and removal of organic pollutants. This study describes promising, cheap and photoactive self-supported hybrid membranes as a possible solution for wastewater treatment applications. In the course of this research work, the photocatalytic performance of titania nanowire (TiO2 NW)-based hybrid membranes in the adsorption and degradation of methylene blue (MB) under UV irradiation was investigated. Characterization techniques such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), X-ray powder diffractometry (XRD) were used to study the morphology and surface of the as-prepared hybrid membranes. We tested the photocatalytic efficiency of the as-prepared membranes in decomposing methylene blue (MB) under UV light irradiation. The hybrid membranes achieved the removal of MB with a degradation efficiency of 90% in 60 min. The high efficiency can be attributed to the presence of binary components in the membrane that enhanced both the adsorption capability and the photocatalytic ability of the membranes. The results obtained suggest that multicomponent hybrid membranes could be promising candidates for future photocatalysis-based water treatment technologies that also take into account the principles of circular economy.  相似文献   
2.
The key to the electrochemical conversion of CO2 lies in the development of efficient electrocatalysts with ease of operation, good conductivity, and rich active sites that fulfil the desired reaction direction and selectivity. Herein, an oxidative etching of Au20Cu80 alloy is used for the synthesis of a nanoporous Au3Cu alloy, representing a facile strategy for tuning the surface electronic properties and altering the adsorption behavior of the intermediates. HRTEM, XPS, and EXAFS results reveal that the curved surface of the synthesized nanoporous Au3Cu is rich in gold with unsaturated coordination conditions. It can be used directly as a self-supported electrode for CO2 reduction, and exhibits high Faradaic efficiency (FE) of 98.12 % toward CO at a potential of −0.7 V versus the reversible hydrogen electrode (RHE). The FE is 1.47 times that over the as-made single nanoporous Au. Density functional theory reveals that *CO has a relatively long distance on the surface of nanoporous Au3Cu, making desorption of CO easier and avoiding CO poisoning. The Hirshfeld charge distribution shows that the Au atoms have a negative charge and the Cu atoms exhibit a positive charge, which separately bond to the C atom and O atom in the *COOH intermediate through a bidentate mode. This affords the lowest *COOH adsorption free energy and low desorption energy for CO molecules.  相似文献   
3.
Recently, various titanium dioxide (TiO2) nanostructures have received increasing attention in the fields of energy conversion and storage owing to their electrochemical properties. However, these particulate nanomaterials exclusively exist in the powder form, which may cause health risks and environmental hazards. Herein we report a novel, highly elastic bulk form of TiO2 for safe use and easy recycling. Specifically, TiO2 nanofibrous aerogels (NAs) consisting of resiliently bonded, flexible TiO2 nanofibers are constructed, which have an ultralow bulk density, ultrahigh porosity, and excellent elasticity. To promote charge transfer, they are subjected to lithium reduction to generate abundant oxygen vacancies, which can modulate the electronic structure of TiO2, resulting in a conductivity up to 38.2 mS cm−1. As a proof-of-concept demonstration, the conductive and elastic TiO2 NAs serve as a new type of self-supported electrocatalyst for ambient nitrogen fixation, achieving an ammonia yield of 4.19×10−10 mol s−1 cm−2 and a Faradaic efficiency of 20.3 %. The origin of the electrocatalytic activity is revealed by DFT calculations.  相似文献   
4.
Recently, carboxylate metal‐organic framework (MOF) materials were reported to perform well as anode materials for lithium‐ion batteries (LIBs); however, the presumed lithium storage mechanism of MOFs is controversial. To gain insight into the mechanism of MOFs as anode materials for LIBs, a self‐supported Cu‐TCNQ (TCNQ: 7,7,8,8‐tetracyanoquinodimethane) film was fabricated via an in situ redox routine, and directly used as electrode for LIBs. The first discharge and charge specific capacities of the self‐supported Cu‐TCNQ electrode are 373.4 and 219.4 mAh g?1, respectively. After 500 cycles, the reversible specific capacity of Cu‐TCNQ reaches 280.9 mAh g?1 at a current density of 100 mA g?1. Mutually validated data reveal that the high capacity is ascribed to the multiple‐electron redox conversion of both metal ions and ligands, as well as the reversible insertion and desertion of Li+ ions into the benzene rings of ligands. This work raises the expectation for MOFs as electrode materials of LIBs by utilizing multiple active sites and provides new clues for designing improved electrode materials for LIBs.  相似文献   
5.
石磊  王正  王兴旺  李明星  丁奎岭 《有机化学》2006,26(10):1444-1456
较系统地介绍了手性催化剂负载的一种新方法(即“自负载”策略)及其在非均相不对称催化反应中应用的最新进展. 与传统的负载模式不同, “自负载”策略中利用含双或多官能团的配体与金属通过自组装形成的有机-无机聚合物做为催化剂, 因此不需使用任何载体. “自负载”手性催化剂在若干非均相不对称催化反应中显示了优秀的催化活性和对映选择性并且能够简单回收再利用, 为手性催化剂的负载化提供了一个新的策略.  相似文献   
6.
Reducing energy consumption and improving energy utilization efficiency has become the focus of research in the 21st century. Electrocatalytic water splitting is one of the promising strategies for producing hydrogen energy. In this study, the non-noble nickel-iron layered double hydroxide (NiFe-LDH) catalyst is deposited on the electrochemically intercalated graphite/graphene (G/GE) substrate and directly used as the self-supported and binder-free electrode for electrocatalytic water oxidation. The Ni2Fe1-LDH@G/GE catalyst shows a low overpotential of 194 mV at a current density of 10 mA cm–2, which is better than the noble metal catalyst IrO2 (314 mV) and RuO2 (330 mV) and many other related works. This research provides a facile way to directly prepare the catalyst electrode with high performance and low cost.  相似文献   
7.
软X射线波段滤光膜材料大都为自支撑金属薄膜,实验室环境下自支撑薄膜长期与空气接触表面易氧化,空气中的杂质原子进入自支撑薄膜内部,致使自支撑膜光学性能大幅下降.5 nm至20 nm软X射线波段Zr具有较低的质量吸收系数和较小的密度,在该波段Zr滤光膜透过率较高.采用脱模剂法制备自支撑Zr膜,在洁净的浮法玻璃上蒸镀一层Na...  相似文献   
8.
Electrocatalytic water splitting has been considered as a promising strategy for the sustainable evolution of hydrogen energy and storage of intermittent electric energy. Efficient catalysts for electrocatalytic water splitting are urgently demanded to decrease the overpotentials and promote the sluggish reaction kinetics. Carbon-based composites, including heteroatom-doped carbon materials, metals/alloys@carbon composites, metal compounds@carbon composites, and atomically dispersed metal sites@carbon composites have been widely used as the catalysts due to their fascinating properties. However, these electrocatalysts are almost powdery form, and should be cast on the current collector by using the polymeric binder, which would result in the unsatisfied electrocatalytic performance. In comparison, a self-supported electrode architecture is highly attractive. Recently, self-supported metal–organic frameworks (MOFs) constructed by coordination of metal centers and organic ligands have been considered as suitable templates/precursors to construct free-standing carbon-based composites grown on conductive substrate. MOFs-derived carbon-based composites have various merits, such as the well-aligned array architecture and evenly distributed active sites, and easy functionalization with other species, which make them suitable alternatives to non-noble metal-included electrocatalysts. In this review, we intend to show the research progresses by employment of MOFs as precursors to prepare self-supported carbon-based composites. Focusing on these MOFs-derived carbon-based nanomaterials, the latest advances in their controllable synthesis, composition regulation, electrocatalytic performances in hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and overall water splitting (OWS) are presented. Finally, the challenges and perspectives are showed for the further developments of MOFs-derived self-supported carbon-based nanomaterials in electrocatalytic reactions.  相似文献   
9.
何水剑  陈卫 《电化学》2015,21(6):518
自支撑电极材料在超级电容器中有着广泛的应用. 碳材料具有结构多样、来源丰富、价格低廉以及性能稳定等优点,是构建三维自支撑电极材料的首选基底材料. 本文结合作者课题组的研究工作,从“由上而下”和“由下而上”两个方面,概述了设计、制备三维自支撑电极材料的常用方法及材料的电容性能,希望对开发利用天然可再生资源,制备高性能的自支撑电极材料及其在超级电容器材料中的应用有所帮助.  相似文献   
10.
In this work, for the first time, a cobalt carbonate hydroxide (Co(CO3)0.5(OH)?0.11 H2O) nanowire array on Ti mesh (CHNA/Ti) was applied to drive the dehydrogenation of alkaline NaBH4 solution for on‐demand hydrogen production. Compared with other nanostructured Co‐based catalyst systems, CHNA/Ti can be activated more quickly and separated easily from fuel solutions. This self‐supported cobalt salt nanowire array catalyst works as an efficient and robust 3D catalyst for the hydrolysis reaction of NaBH4 with a hydrogen generation rate of 4000 mL min?1 gCo?1 and a low apparent activation energy of 39.78 kJ mol?1 and offers an attractive system for on‐demand hydrogen generation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号