首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   722篇
  免费   54篇
  国内免费   51篇
化学   790篇
晶体学   1篇
力学   16篇
综合类   2篇
物理学   18篇
  2023年   9篇
  2022年   11篇
  2021年   23篇
  2020年   9篇
  2019年   14篇
  2018年   16篇
  2017年   24篇
  2016年   30篇
  2015年   28篇
  2014年   28篇
  2013年   33篇
  2012年   88篇
  2011年   37篇
  2010年   25篇
  2009年   50篇
  2008年   45篇
  2007年   67篇
  2006年   37篇
  2005年   60篇
  2004年   33篇
  2003年   32篇
  2002年   13篇
  2001年   14篇
  2000年   17篇
  1999年   13篇
  1998年   18篇
  1997年   14篇
  1996年   3篇
  1995年   5篇
  1994年   5篇
  1993年   9篇
  1992年   3篇
  1991年   5篇
  1990年   4篇
  1988年   1篇
  1987年   1篇
  1983年   1篇
  1981年   1篇
  1974年   1篇
排序方式: 共有827条查询结果,搜索用时 15 毫秒
761.
The study of the electrode reactions of palladium(II) at non-modified carbon paste electrodes (CPEs) in chloride solution has revealed the existence of a chloropalladate(II) complex at the electrode surface. The complex is formed during the application of anodic potentials after preceding palladium deposition. In the present paper the electrode reactions of PdII at CPEs modified with some N′,N′-disubstituted derivatives of N-benzoylthiourea [as selective ligands for palladium(II)] are studied in chloride solution by cyclic voltammetry. Two reduction peaks are observed in the cathodic scans recorded after deposition of palladium and anodization of the electrode. From the results it is concluded that [in addition to the chloropalladate(II) complex, observed at the non-modified electrode] a second palladium complex is formed at positive potentials. The formation of the palladium(II) complex of the N-benzoylthiourea derivatives by ligand exchange at the electrode surface is assumed. The ligand exchange itself occurs without charge transfer across the electrode|solution interface; therefore, it cannot be detected electrochemically. After palladium deposition and anodic treatment a pronounced "inverse" peak (i.e., an anodic peak in the cathodic scan) with peak currents up to 100 μA is observed at about +0.8 V. Its peak current increases with the amount of deposited palladium and the number of cycles. The reactions at the electrode surface are discussed. The results of the study reveal the existence of two different surface complexes of palladium(II) at ligand-modified CPEs, but the surface reactions could not be elucidated in detail. Electronic Publication  相似文献   
762.
A bentonite-modified carbon paste electrode has been applied to the determination of 2-nitrophenol by differential pulse voltammmetry. The electrochemical reduction of 2-nitrophenol at –0.8 V is carried out in an artificial sea water-formic acid/sodium formate medium at pH 4. The peak height was found to be dependent on the pH over the range 2–11; the presence of a secondary process was observed in the pH range 8–11. The peak potential showed a dependence on pH, with two linear regions with different slopes. A linear relationship between peak intensity and concentration was obtained in the range 0.07–10 mgl–1, with a detection limit of 0.03 mg 1–1 and a coefficient of variation of 1.3% at 5 mg 1–1. The effects of organic and inorganic species on the 2-nitrophenol determination were studied with a view to testing the resolution of the voltammetric technique. The proposed method has been applied to sea water samples with good results.  相似文献   
763.
Guo H  He N  Ge S  Yang D  Zhang J 《Talanta》2005,68(1):61-66
An anodic stripping voltammetric method for the determination of cardiac troponin I (cTnI) at a MCM-41 mesoporous material modified carbon paste electrode (MCM-MCPE) was investigated. The test was based on the dual monoclonal antibody “sandwich” principle using colloidal gold as a labeled substrate. Four main steps were carried out to obtain the analytical signal, i.e. electrode preparation, immunoreaction, silver enhancement, and anodic stripping voltammetric detection. The anodic stripping peak current increased linearly with the concentration of cTnI over the range of 0.8-5.0 ng/ml. A detection limit of 0.5 ng/ml was obtained. The established method was applied to detect cTnI in acute myocardial infarction (AMI) samples using routine enzyme-linked immunoadsorbent assay (ELISA) for comparison analysis, and good results were obtained.  相似文献   
764.
CoO-MoO3/γ-Al2O3 and NiO-MoO3/γ-Al2O3 catalysts were prepared by the reaction of α-boehmite (α-AlOOH) with MoO3 in an aqueous paste, followed by the reaction of the MoO3/α-AlOOH catalyst with Co(OH)2·CoCO3 or 2NiCO3·3Ni(OH)2·4H2O in an aqueous paste, and by subsequent drying and/or calcination. The deposited MoO3 functioned as a thermal stabilizer inhibiting the sintering of the Al2O3 phase during calcination. The deposited Co and Ni were efficient activity promoters in benzothiophene hydrodesulfurization.  相似文献   
765.
Recently, the studies and applications for the pola-rographic catalytic waves of organic compounds at dropping mercury electrode made considerable head-way. Tovopova et al.[1―4] reported the polarographic catalytic waves of the organic compounds containi…  相似文献   
766.
A carbon-paste electrode chemically modified with a Schiff-base complex of cobalt (cobalt(II)-4-chlorosalophen, CoClSal) is utilized to investigate the voltammetric response of propylthiouracil (PTU). The mechanism of electrocatalytic oxidation of the compound is investigated by means of cyclic voltammetric studies applying various pHs to the buffered solutions. The modified electrode exhibits effective catalytic properties that lower the anodic overpotential and enhance the rate of electron transfer for the electrochemical oxidation of PTU. The results of the cyclic voltammetric (CV) and differential pulse voltammetric (DPV) techniques showed that the modified electrode exhibits good selectivity for discriminating between the anodic wave of PTU and some biological thiols (e.g. cysteine) which may be present in human serum samples. DPV is used as a very sensitive electroanalytical method for the detection of trace amounts of PTU in pharmaceutical and clinical preparations. The results showed that the anodic peak current for the analyte in DPV varies linearly with the concentration of PTU in the range of 7.5 × 10−6 to 7.5 × 10−4 M (RSD for the slope of calibration curve <4%, n = 6).  相似文献   
767.
Honglan Qi 《Talanta》2007,72(3):1030-1035
A sensitive electrochemical detection of DNA hybridization using a paste electrode assembled by multi-wall carbon nanotubes (MWNT) and immobilizing DNA probe within electropolymerized polypyrrole (ppy) was developed. The detection approach relied on entrapping of DNA probe within electropolymerized ppy film on the MWNT paste electrode and monitoring the current change generated from an electroactive intercalator of ethidium bromide (EB) after DNA hybridization. As a consequence of DNA hybridization, significant changes in the current of EB intercalated with double-stranded DNA (ds-DNA) on the MWNT paste electrode were observed. Based on the response of EB, only the complementary DNA sequence gave an obvious current signal compared with the five-point mismatched and non-complementary sequences. The oxidation peak current was linearly related to the logarithm of the concentration of the complementary DNA sequence from 1.0 × 10−10 to 1.0 × 10−8 M with a detection limit of 8.5 × 10−11 M. This work demonstrates that the incorporation of MWNT paste electrode with electropolymerization is a promising strategy of functional interfaces for the immobilization of biological recognition elements.  相似文献   
768.
A composition of multiwalled carbon nanotube (MWCNT), Nafion and cobalt(II)‐5‐nitrosalophen (CoNSal) is applied for the modification of carbon‐paste electrode (CPE). The pretreated MWCNT is well dispersed in the alcoholic solution of Nafion under the ultrasonic agitation, and the resulted suspension is used as modifier (with 10% w/w) in the matrix of the paste electrode. The prepared electrode further modified by addition of 3 wt% of CoNSal. The resulted modified electrode is used as a sensitive voltammetric sensor for simultaneous determination of uric acid (UA) and ascorbic acid (AA). The electrode showed efficient electrocatalytic activity in lowering the anodic overpotentials and enhancement of the anodic currents. This electrode is able to completely resolve the voltammetric response of UA and AA. The effects of potential sweep rate and pH of the buffer solution on the response of the electrode, toward UA and AA, and the peak resolution is thoroughly investigated by cyclic and differential pulse voltammetry (CV and DPV). The best peak resolution for these compounds using the modified electrode is obtained in solutions with pH 4. The ΔEp for UA and AA in these methods is about 315 mV, which is considerably better than previous reports for these compounds. A linear dynamic range of 1×10?7 to 1×10?4 M with a detection limit of 6×10?8 M is resulted for UA in buffered solutions with pH 4.0. The voltammetric response characteristics for AA are obtained as, the linear range of 5×10?7 to 1×10?4 M with the detection limit of 1×10?7 M. The voltammetric detection system was very stable and the reproducibility of the electrode response, based on the six measurements during one month, was less than 3.5% for the slope of the calibration curves of UA and AA. The prepared modified electrode is successfully applied for the determination of AA and UA in mixture samples and reasonable accuracies are resulted.  相似文献   
769.
A sensitive method is described for the determination of trace bismuth based on the bismuth-bromopyrogallol red (BPR) adsorption at a carbon paste electrode (CPE). The overall analysis involved a three-step procedure: accumulation, reduction, and anodic stripping. Optimal conditions were found to be an electrode containing 25% paraffin oil and 75% high purity graphite powder, a 0.30 mol l−1 HCl solution containing 2.0×10−5 mol l−1 BPR as supporting medium; accumulation potential and time, −0.10 V, 3 min; reduction potential and time, −0.35 V, 60 s; scan rate 100 mV s−1; scan range from −0.35 to 0.15 V. It was found that the Bi(III)-BPR complex could be accumulated on the electrode surface during the accumulation period. Then the Bi(III) in the Bi(III)-BPR complex on the CPE surface was reduced to Bi(0) during reduction interval and finally reoxidized during the anodic stripping step for voltammetric quantification. Factors affecting the accumulation, reduction, and stripping steps were investigated. Interferences by other ions were studied as well. The detection limit was found to be 5×10−10 mol l−1 with a 3 min accumulation time. The linear range was from 1.0×10−9 to 5.0×10−7 mol l−1. Application of the procedure to the determination of bismuth in water and human hair samples gave good results.  相似文献   
770.
A catalytic adsorptive stripping voltammetric method for the determination of copper(II) on a carbon paste electrode (PCE) in an alizarin red S (ARS)-K2S2O8 system is proposed. In this method, copper(II) is effectively enriched by both the formation and adsorption of a copper(II)-ARS complex on the PCE, and is determined by catalytic stripping voltammetry. The catalytic enhancement of the cathodic stripping current of the Cu(II) in the complex results from a redox cycle consisting of electrochemical reduction of Cu(II) ion in the complex and subsequent chemical oxidation of the Cu(II) reduction product by persulfate, which reduces the contamination of the working electrode from Cu deposition and also improves analytical sensitivity. In Britton-Robinson buffer (pH 4.56±0.1) containing 3.6×10−5 mol L−1 ARS and 1.6×10−3 mol L−1 K2S2O8, with 180 s of accumulation at −0.2 V, the second-order derivative peak current of the catalytic stripping wave was proportional to the copper(II) concentration in the range of 8.0×10−10 to ∼3.0×10−8 mol L−1. The detection limit was 1.6×10−10 mol L−1. The proposed method was evaluated by analyzing copper in water and soil.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号