首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6469篇
  免费   786篇
  国内免费   174篇
化学   6748篇
晶体学   55篇
力学   278篇
综合类   7篇
数学   164篇
物理学   177篇
  2024年   4篇
  2023年   82篇
  2022年   93篇
  2021年   156篇
  2020年   266篇
  2019年   194篇
  2018年   111篇
  2017年   113篇
  2016年   258篇
  2015年   280篇
  2014年   293篇
  2013年   392篇
  2012年   386篇
  2011年   396篇
  2010年   360篇
  2009年   392篇
  2008年   480篇
  2007年   506篇
  2006年   394篇
  2005年   405篇
  2004年   428篇
  2003年   350篇
  2002年   116篇
  2001年   110篇
  2000年   95篇
  1999年   131篇
  1998年   119篇
  1997年   108篇
  1996年   93篇
  1995年   103篇
  1994年   45篇
  1993年   32篇
  1992年   28篇
  1991年   20篇
  1990年   8篇
  1989年   11篇
  1988年   12篇
  1987年   11篇
  1986年   3篇
  1985年   6篇
  1984年   3篇
  1983年   3篇
  1982年   6篇
  1980年   2篇
  1979年   4篇
  1978年   2篇
  1975年   4篇
  1974年   2篇
  1969年   2篇
  1957年   2篇
排序方式: 共有7429条查询结果,搜索用时 140 毫秒
361.
The metathetical reactions between SnBr4 and Li2[E'C(PPh2E)2] in toluene produce the homoleptic tin(IV) complexes Sn[E′C(PPh2E)2]2 [E = E′ = S ( 1b ); E = S, E′ = Se ( 1c )], which were isolated as red crystals and structurally characterized by X‐ray crystallography. The metrical parameters of these octahedral complexes are compared with those of the all‐selenium analog Sn[E′C(PPh2E)2]2 (E = E′ = Se, 1a ), which was prepared previously by a different route.  相似文献   
362.
A combined synchrotron X‐ray and density functional theory (DFT) study on the structure of a Jäger‐type N2O2 chelate complex was carried out. The ethoxy‐substituted bis(3‐oxo‐enaminato)cobalt(II) complex ( 1 ) was an original sample from the laboratory of the late Professor Ernst‐G. Jäger (University of Jena, Germany). Single‐crystal X‐ray analysis revealed essentially flat molecules of 1 , which are unsolvated and coordinatively unsaturated. The DFT calculations on the isolated molecule predict a planar structure for the non‐hydrogen atoms, which is a local minimum on the energy surface. The crystal packing is achieved through off‐set stacking (staircase arrangement), resulting in a herringbone pattern in the space group P212121. The structure of 1 is compared to known structures of related bis(3‐oxo‐enaminato)cobalt(II) complexes ( 2 – 4 ). Original bulk material of 1 was investigated by scanning electron microscopy (SEM), powder X‐ray diffraction (PXRD), melting point determination, and infrared (IR) spectroscopy.  相似文献   
363.
In the present work a modular pathway towards the synthesis of a new versatile MRI contrast agent is reported and its physico-chemical properties are described. Two different functional groups were attached on two arms of the gadolinium 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate (DOTA) in order to get a platform able to bind one probe designed to target specific biological marker and a fluorescent molecule likely to be used for optical imaging. The nuclear magnetic relaxation dispersion (NMRD) profile, the oxygen-17 relaxometric NMR study and stability assessment versus transmetalation of the Gd-complex show that this new contrast agent has a relaxivity and transmetalation stability similar to Gd–DOTA.  相似文献   
364.
365.
Finding the root mean sum of squared deviations (RMSDs) between two coordinate vectors that correspond to the rigid body motion of a macromolecule is an important problem in structural bioinformatics, computational chemistry, and molecular modeling. Standard algorithms compute the RMSD with time proportional to the number of atoms in the molecule. Here, we present RigidRMSD, a new algorithm that determines a set of RMSDs corresponding to a set of rigid body motions of a macromolecule in constant time with respect to the number of atoms in the molecule. Our algorithm is particularly useful for rigid body modeling applications, such as rigid body docking, and also for high‐throughput analysis of rigid body modeling and simulation results. We also introduce a constant‐time rotation RMSD as a similarity measure for rigid molecules. A C++ implementation of our algorithm is available at http://nano‐d.inrialpes.fr/software/RigidRMSD . © 2014 Wiley Periodicals, Inc.  相似文献   
366.
<正>1 General methods Unless otherwise noted, all reactions and manipulations involving air- or moisture-sensitive compounds were performed using standard Schlenk techniques or in a glovebox. All solvents were purified and dried using standard procedures. Melting points were measured on a RY-I apparatus and uncorrected. 1H, 13 C, 31 P and 19 F NMR spectra were recorded on Varian Mercury 300 or 400 MHz spectrometers. Chemical shifts(δ values) were reported in ppm downfield from internal TMS(1H NMR), CDCl3(13C NMR), external 85% H3PO4(31P NMR), and external CF3CO2H(19F NMR), respectively. Optical rotations were determined using a Perkin Elmer 341 MC polarimeter. The IR spectra were measured on a BRUKER TENSOR 27  相似文献   
367.
The electronic properties of four divinylanthracene‐bridged diruthenium carbonyl complexes [{RuCl(CO)(PMe3)3}2(μ? CH?CHArCH?CH)] (Ar=9,10‐anthracene ( 1 ), 1,5‐anthracene ( 2 ), 2,6‐anthracene ( 3 ), 1,8‐anthracene ( 4 )) obtained by molecular spectroscopic methods (IR, UV/Vis/near‐IR, and EPR spectroscopy) and DFT calculations are reported. IR spectroelectrochemical studies have revealed that these complexes are first oxidized at the noninnocent bridging ligand, which is in line with the very small ν(C?O) wavenumber shift that accompanies this process and also supported by DFT calculations. Because of poor conjugation in complex 1 , except oxidized 1+ , the electronic absorption spectra of complexes 2+ , 3+ , and 4+ all display the characteristic near‐IR band envelopes that have been deconvoluted into three Gaussian sub‐bands. Two of the sub‐bands belong mainly to metal‐to‐ligand charge‐transfer (MLCT) transitions according to results from time‐dependent DFT calculations. EPR spectroscopy of chemically generated 1+ – 4+ proves largely ligand‐centered spin density, again in accordance with IR spectra and DFT calculations results.  相似文献   
368.
3,6‐Connected cyclohexadienes as precursors for polyphenylenes are synthesized and characterized by mass spectrometry and NMR spectroscopy. Pure fractions of trimers, hexamers, and nonamers are collected after separation of the product mixture by recycling GPC. The anticipated formation of rigid linear structures, due to the trans‐configuration of the monomeric units, is supported by density functional theory and experimentally confirmed by dynamic light scattering from dilute solution at low scattering angles. The obtained translational diffusion coefficients are represented by rigid rod‐like or prolate ellipsoid‐like molecular shapes. The measurements of diffusion coefficients reveal a length‐dependent ratio of 1:2:3 between the three oligomers, which directly correlates to the expected length extension from trimer to nonamer.

  相似文献   

369.
Two new chemically stable metalloporphyrin-bridged metal-catechol frameworks, InTCP-Co and FeTCP-Co, were constructed to achieve artificial photosynthesis without additional sacrificial agents and photosensitizers. The CO2 photoreduction rate over FeTCP-Co considerably exceeds that obtained over InTCP-Co, and the incorporation of uncoordinated hydroxyl groups, associated with catechol, into the network further promotes the photocatalytic activity. The iron-oxo coordination chain assists energy band alignment and provides a redox-active site, and the uncoordinated hydroxyl group contributes to the visible-light absorptance, charge-carrier transfer, and CO2-scaffold affinity. With a formic acid selectivity of 97.8 %, FeTCP-OH-Co affords CO2 photoconversion with a reaction rate 4.3 and 15.7 times higher than those of FeTCP- Co and InTCP-Co, respectively. These findings are also consistent with the spectroscopic study and DFT calculation.  相似文献   
370.
Combining the selectivity of G-quadruplex (G4) ligands with the spatial and temporal control of photochemistry is an emerging strategy to elucidate the biological relevance of these structures. In this work, we developed six novel V-shaped G4 ligands that can, upon irradiation, form stable covalent adducts with G4 structures via the reactive intermediate, quinone methide (QM). We thoroughly investigated the photochemical properties of the ligands and their ability to generate QMs. Subsequently, we analyzed their specificity for various topologies of G4 and discovered a preferential binding towards the human telomeric sequence. Finally, we tested the ligand ability to act as photochemical alkylating agents, identifying the covalent adducts with G4 structures. This work introduces a novel molecular tool in the chemical biology toolkit for G4s.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号