首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   250篇
  免费   27篇
  国内免费   47篇
化学   143篇
晶体学   1篇
力学   11篇
综合类   6篇
数学   132篇
物理学   31篇
  2024年   2篇
  2023年   5篇
  2022年   11篇
  2021年   13篇
  2020年   10篇
  2019年   12篇
  2018年   3篇
  2017年   12篇
  2016年   16篇
  2015年   11篇
  2014年   11篇
  2013年   21篇
  2012年   20篇
  2011年   18篇
  2010年   14篇
  2009年   5篇
  2008年   9篇
  2007年   16篇
  2006年   6篇
  2005年   13篇
  2004年   15篇
  2003年   17篇
  2002年   3篇
  2001年   6篇
  2000年   5篇
  1999年   4篇
  1998年   4篇
  1997年   9篇
  1996年   1篇
  1995年   4篇
  1994年   6篇
  1993年   1篇
  1992年   2篇
  1991年   3篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1975年   1篇
排序方式: 共有324条查询结果,搜索用时 15 毫秒
11.
Urchin‐like Ag/ZnO hierarchical nano/microstructures have been synthesized through a facile low‐temperature hydrothermal growth method based on galvanic replacement mechanism. The experimental results show that the urchin‐like Ag/ZnO heterostructures are formed through the epitaxial growth of ZnO nanorods on the {111} facets of Ag nanoparticles along their own c‐axis. The photocatalytic properties of the products were evaluated by the degradation of RhB dye solution under ultraviolet irradiation, and the results show that the products exhibit significantly enhanced photocatalytic properties comparing with pure ZnO nanorods. The products with a Ag content of 35.64 atom % prepared with a Ag+ concentration in solution of 5 mM exhibit surprisingly high degradation rate (99.5%) for RhB dye solution (4 mg/L) after photocatalytic reaction for only 14 min under ultraviolet irradiation. The Schottky barrier formed at the metal‐semiconductor interfaces improves the segregation of charges and prevents the charge recombination, and thus significantly enhances the photocatalytic activities of the products. On the other hand, the high stability of the urchin‐like Ag/ZnO hierarchical nano/microstructures can effectively prevent the aggregation of nanostructures with simultaneously preserving high photocatalytic properties due to the existence of nanosized unites. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
12.
The electronic effects of the 5‐ and 6‐membered heterocyclic rings on the C?N? N unit of five different hydrazone derivatives of pyridine‐2‐, ‐3‐ and ‐4‐carbaldehydes, pyrrole‐2‐carbaldehyde, furan‐2‐ and ‐3‐carbaldehydes and thiophene‐2‐ and ‐3‐carbaldehydes have been studied with the aid of 13C and 15N NMR measurements together with the natural bond orbital (NBO) analysis. As model compounds are used the corresponding substituted benzaldehyde derivatives. The polarization of the C?N unit of the hydrazone functionality of the heteroaryl derivatives occurs in an analogous manner with that of phenyl derivatives. The electron‐withdrawing heteroaryl groups destabilize and the electron‐donating groups stabilize the positive charge development at the C?N carbon while the effect on the negative charge development is opposite. The 15N NMR chemical shift of the C?N and C?N? N nitrogens and the NBO charges at C?N? N unit can be correlated with the replacement substituent constants σ of the heteroaryl groups. 13C NMR shifts of the C?N carbon of N,N‐dialkylhydrazones of the heteroarenecarbaldehydes can be correlated with a dual parameter equation possessing the polar substituent constant σ* of the heteroaryl group and the electronegativity of the heteroatom as variables. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
13.
Photoelastic stress freezing analyses in the orthopaedic literature have, in the past, been limited to studies where bone-on-bone, bone-on-metal or ultra-high molecular weight polyethylene (UHMWPE)-on-metal constructs are modeled. In these cases photoelastic plastics are used to simulate either bone or UHMWPE as it interacts with a metal implant. In joints such as the shoulder, a UHMWPE component is often cemented directly into the scapula's glenoid concavity using polymethylmethacrylate (PMMA). While a photoelastic material can be used to simulate bone with proper load scaling, UHMWPE and PMMA have very different mechanical properties at elevated stress freezing temperatures as compared within vivo body temperature. In this study, materials were identified such that proper scaling of elastic properties at elevated temperatures was utilized to simulate the metal-UHMWPE-PMMA-bone construct. Stresses on orthogonal planes throughout the glenoid were compared for two different UHMWPE component anchoring geometries (keeled and pegged). High stresses were found at the neck of the glenoid and also at the component-bone interface beneath simulated PMMA inclusions.  相似文献   
14.
A continuously monitored system is considered, that gradually and stochastically deteriorates according to a bivariate non-decreasing Lévy process. The system is considered as failed as soon as its bivariate deterioration level enters a failure zone, assumed to be an upper set. A preventive maintenance policy is proposed, which involves a delayed replacement, triggered by the reaching of some preventive zone for the system deterioration level. The preventive maintenance policy is assessed through a cost function on an infinite horizon time. The cost function is provided in full form, and tools are provided for its numerical computation. The influence of different parameters on the cost function is studied, both from a theoretical and/or numerical point of view.  相似文献   
15.
The serine protease, DegP exhibits proteolytic and chaperone activities, essential for cellular protein quality control and normal cell development in eukaryotes. The P. falciparum DegP is essential for the parasite survival and required to combat the oscillating thermal stress conditions during the infection, protein quality checks and protein homeostasis in the extra-cytoplasmic compartments, thereby establishing it as a potential target for drug development against malaria. Previous studies have shown that diisopropyl fluorophosphate (DFP) and the peptide SPMFKGV inhibit E. coli DegP protease activity. To identify novel potential inhibitors specific to PfDegP allosteric and the catalytic binding sites, we performed a high throughput in silico screening using Malaria Box, Pathogen Box, Maybridge library, ChEMBL library and the library of FDA approved compounds. The screening helped identify five best binders that showed high affinity to PfDegP allosteric (T0873, T2823, T2801, RJC02337, CD00811) and the catalytic binding site (T0078L, T1524, T2328, BTB11534 and 552691). Further, molecular dynamics simulation analysis revealed RJC02337, BTB11534 as the best hits forming a stable complex. WaterMap and electrostatic complementarity were used to evaluate the novel bio-isosteric chemotypes of RJC02337, that led to the identification of 231 chemotypes that exhibited better binding affinity. Further analysis of the top 5 chemotypes, based on better binding affinity, revealed that the addition of electron donors like nitrogen and sulphur to the side chains of butanoate group are more favoured than the backbone of butanoate group. In a nutshell, the present study helps identify novel, potent and Plasmodium specific inhibitors, using high throughput in silico screening and bio-isosteric replacement, which may be experimentally validated.  相似文献   
16.
用美国GOW—MAC公司的气相色谱仪和Agilent公司的气相色谱仪对某卫星气体贮箱在氦气置换化验过程中发现的未知杂质进行试验分析,经分析未知杂质的来源可能是所用气体贮箱处理时的残留物。试验发现,氧化剂贮箱氦气和燃烧剂贮箱氦气经3次氦气置换后未知杂质的色谱峰消失。提出了消除未知杂质的的建议。  相似文献   
17.
刘民  郭新闻  王祥生 《催化学报》2004,25(3):169-170
 以改进方法合成的B-ZSM-5为母体,采用气固相同晶取代法合成了较小晶粒的Ti-ZSM-5分子筛. 考察了样品的物化性能和催化苯酚羟基化性能. 结果表明: 所合成的小晶粒Ti-ZSM-5具有较高的结晶度,尺寸为100~200 nm,且不含锐钛矿型TiO2,对苯酚羟基化反应的催化性能优异.  相似文献   
18.
19.
1,1,2,2,3,3,4‐Heptafluorocyclopentane (F7A) has considerable potential to be a new halon replacement due to its environmental friendliness and low‐toxicity. However, the reaction processes of F7A with hydroxyl and hydrogen free radicals, which are of great importance for investigating its fire suppression mechanisms, are still unclear. In this paper, ab inito and density functional theory are used to deduce the possible reaction pathways for the reactions of F7A with hydroxyl and hydrogen free radicals at the CCSD/cc‐pVDZ//B3LYP/6‐311++G (d,p) level of theory. Two distinct reaction pathways including ten elementary reaction channels for F7A with hydroxyl free radical, and five distinct reaction pathways including twenty elementary reaction channels for F7A with hydrogen free radical are investigated. The geometries, vibrational frequencies and reaction energy barriers are also determined. Based on the calculated results, the possible reaction mechanisms are proposed and discussed. The most feasible reaction channel for F7A with hydroxyl free radical is that leads to CH(OH)CH2(CF2)3+·F, and the most feasible reaction channel for F7A with hydrogen free radical is that leads to (CF2)3CH2CH·+HF. The study is helpful to further study its fire suppression mechanisms and promote it to be a new generation of halon replacement.  相似文献   
20.
An electrochemical approach to fabricate a nanostructured Fe/Pt-Fe catalyst through electrodepo-sition followed by galvanic replacement is presented. An Fe/Pt-Fe nanostructured electrode was prepared by deposition of Fe-Zn onto a Fe electrode surface, followed by replacement of the Zn by Pt at open-circuit potential in a Pt-containing alkaline solution. Scanning electron microscopy and energy-dispersive X-ray techniques reveal that the Fe/Pt-Fe electrode is porous and contains Pt. The electrocatalytic activity of the Fe/Pt-Fe electrode for oxidation of methanol was examined by cyclic voltammetry and chronoamperometry. The electrooxidation current on the Fe/Pt-Fe catalyst is much higher than that on flat Pt and smooth Fe catalysts. The onset potential and peak potential on the Fe/Pt-Fe catalyst are more negative than those on flat Pt and smooth Fe electrodes for methanol electrooxidation. All results show that this nanostructured Fe/Pt-Fe electrode is very attractive for integrated fuel cell applications in alkaline media.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号