首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1448篇
  免费   295篇
  国内免费   168篇
化学   1855篇
晶体学   11篇
力学   1篇
综合类   3篇
物理学   41篇
  2024年   2篇
  2023年   24篇
  2022年   59篇
  2021年   94篇
  2020年   126篇
  2019年   80篇
  2018年   68篇
  2017年   61篇
  2016年   115篇
  2015年   107篇
  2014年   100篇
  2013年   142篇
  2012年   128篇
  2011年   89篇
  2010年   64篇
  2009年   63篇
  2008年   77篇
  2007年   61篇
  2006年   68篇
  2005年   54篇
  2004年   54篇
  2003年   44篇
  2002年   31篇
  2001年   20篇
  2000年   26篇
  1999年   19篇
  1998年   17篇
  1997年   26篇
  1996年   22篇
  1995年   18篇
  1994年   12篇
  1993年   5篇
  1992年   16篇
  1991年   6篇
  1990年   7篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1984年   1篇
  1983年   1篇
  1978年   1篇
排序方式: 共有1911条查询结果,搜索用时 62 毫秒
211.
An electrolyte based on the tris(acetylacetonato)iron(III)/(II) redox couple ([Fe(acac)3]0/1?) was developed for p‐type dye‐sensitized solar cells (DSSCs). Introduction of a NiO blocking layer on the working electrode and the use of chenodeoxycholic acid in the electrolyte enhanced device performance by improving the photocurrent. Devices containing [Fe(acac)3]0/1? and a perylene–thiophene–triphenylamine sensitizer (PMI–6T–TPA) have the highest reported short‐circuit current (JSC=7.65 mA cm?2), and energy conversion efficiency (2.51 %) for p‐type DSSCs coupled with a fill factor of 0.51 and an open‐circuit voltage VOC=645 mV. Measurement of the kinetics of dye regeneration by the redox mediator revealed that the process is diffusion limited as the dye‐regeneration rate constant (1.7×108 M ?1 s?1) is very close to the maximum theoretical rate constant of 3.3×108 M ?1 s?1. Consequently, a very high dye‐regeneration yield (>99 %) could be calculated for these devices.  相似文献   
212.
Inspired by a Newton’s cradle device and interested in the development of redox‐controllable bimetallic molecular switches, a mixed‐valence thallium(III)/thallium(I) bis‐strap porphyrin complex, with TlIII bound out of the plane of the N core and TlI hung to a strap on the opposite side, was formed by the addition of TlOAc to the free base and exposure to indirect sunlight. In this process, oxygen photosensitization by the porphyrin allows the oxidation of TlI to TlIII. The bimetallic complex is dynamic as the metals exchange their positions symmetrically to the porphyrin plane with TlIII funneling through the macrocycle. Further exposure of the complex to direct sunlight leads to thallium dissociation and to total recovery of the free base. Hence, the porphyrin plays a key role at all stages of the cycle of the complex: It hosts two metal ions, and by absorbing light, it allows the formation and dissociation of TlIII. These results constitute the basis for the further design of innovative light‐driven bimetallic molecular devices.  相似文献   
213.
Ferrocenylethynyl‐terminated derivatives 8 – 12 have been synthesized and characterized by electrochemistry and UV/Vis spectroscopy. The electrochemical and photophysical studies indicate that the electronic communication in ferrocenylethynyl‐substituted derivatives is strongly influenced by the substituted position of the ferrocenylethynyl moiety. In situ electrochemical oxidation or chemical oxidation caused a characteristically weak ligand‐to‐metal charge‐transfer (LMCT) band to appear at 700–1000 nm. Subsequent electrochemical reduction or chemical reduction recovered the most of the original curve and the color of the solution as well. Among the derivatives, compound 8 exhibits the highest cis/trans molar ratio (64:36) in the photostationary state (PSS) upon light irradiation at 365 nm. Compound 8 exhibits excellent fatigue resistance and reversibility under several repeated reversible isomerization cycles.  相似文献   
214.
Electrochemical detection of H2 using scanning electrochemical microscopy (SECM) has shown to hold great promise as a sensitive characterization method with high spatial resolution for active surfaces generating H2. Herein, the factors contributing to the current that is measured by SECM in generation/collection mode for H2 detection are studied. In particular, the concentration gradient of H2 at the substrate, the H2/H+ recycling between the SECM tip and substrate and hemispherical profile of H2 diffusion has been discussed. It was postulated that H2/H+ recycling plays a dominant role in the oxidative current measured in generation/collection mode of SECM when the microelectrode is positioned in close vicinity of substrate. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
215.
采用水热法制备了CeO2-ZrO2-WO3(CZW)催化剂,考察了WO3含量对CZW催化剂上NH3选择性催化还原NOx性能的影响,并利用X射线衍射、N2吸附-脱附、H2程序升温还原、NH3和NO程序升温脱附等方法对其进行了表征。结果表明,WO3以无定形的形式存在于催化剂中,添加WO3后显著提高了催化剂的表面酸性,并且在CZW催化剂上出现了强吸附的NO物种,从而有利于提高催化剂的活性。另外,适量的WO3引入将增大催化剂的比表面积,促进催化剂的氧化还原性能,这将有利于提高SCR的催化活性。和CeO2-ZrO2催化剂相比,当WO3的含量为20%时,CZW催化剂表现出良好的抗硫性能。此外,当空速为60 000 h-1时,在200~463 ℃,该催化剂显示出了大于90% NOx转化率。  相似文献   
216.
Poly(1,5‐diaminoanthraquinone) is synthesized by oxidative polymerization of diaminoanthraquinone monomers and investigated as an organic host for Li‐storage reaction. Benefiting from its high density of redox‐active, Li+‐associable benzoquinone groups attached to conducting polyaniline backbones, this polymer undergoes its cathodic reaction predominately through Li+‐insertion/extraction processes, delivering a very high reversible capacity of 285 mAh g?1. In addition, the PDAQ polymer cathode exhibits an excellent rate capability (125 mAh g?1 at 800 mA g?1) and a considerable cyclability with a capacity retention of ~160 mAh g?1 over 200 cycles, possibly serving as a sustainable, high capacity Li+ host cathode for Li‐ion batteries. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 235–238  相似文献   
217.
A stable cyclic (alkyl)(amino)carbene (CAAC) 1 inserts into the para‐CF bond of pentafluoropyridine, and after fluoride abstraction, the iminium‐pyridyl adduct [ 3 ]+ was isolated. A cyclic voltammetry study shows a reversible three‐state redox system involving [ 3 ]+, [ 3 ] ? , and [ 3 ] ? . The CAAC‐pyridyl radical [ 3 ] ? , obtained by reduction of [ 3 ]+ with magnesium, has been spectroscopically and crystallographically characterized. In contrast to the lack of π communication between the CAAC and the pyridine units in cation [ 3 ]+, the unpaired electron of [ 3 ] ? is delocalized over an extended π system involving both heterocycles.  相似文献   
218.
Redox‐inactive metal ions play important roles in tuning chemical properties of metal–oxygen intermediates. Herein we report the effect of water molecules on the redox properties of a nonheme iron(III)–peroxo complex binding redox‐inactive metal ions. The coordination of two water molecules to a Zn2+ ion in (TMC)FeIII‐(O2)‐Zn(CF3SO3)2 ( 1 ‐Zn2+) decreases the Lewis acidity of the Zn2+ ion, resulting in the decrease of the one‐electron oxidation and reduction potentials of 1 ‐Zn2+. This further changes the reactivities of 1 ‐Zn2+ in oxidation and reduction reactions; no reaction occurred upon addition of an oxidant (e.g., cerium(IV) ammonium nitrate (CAN)) to 1 ‐Zn2+, whereas 1 ‐Zn2+ coordinating two water molecules, (TMC)FeIII‐(O2)‐Zn(CF3SO3)2‐(OH2)2 [ 1 ‐Zn2+‐(OH2)2], releases the O2 unit in the oxidation reaction. In the reduction reactions, 1 ‐Zn2+ was converted to its corresponding iron(IV)–oxo species upon addition of a reductant (e.g., a ferrocene derivative), whereas such a reaction occurred at a much slower rate in the case of 1 ‐Zn2+‐(OH2)2. The present results provide the first biomimetic example showing that water molecules at the active sites of metalloenzymes may participate in tuning the redox properties of metal–oxygen intermediates.  相似文献   
219.
The bioconjugation of polyoxometalates (POMs), which are inorganic metal oxido clusters, to DNA strands to obtain functional labeled DNA primers and their potential use in electrochemical detection have been investigated. Activated monooxoacylated polyoxotungstates [SiW11O39{Sn(CH2)2CO}]8? and [P2W17O61{Sn(CH2)2CO}]6? have been used to link to a 5′‐NH2 terminated 21‐mer DNA forward primer through amide coupling. The functionalized primer was characterized by using a battery of techniques, including electrophoresis, mass spectrometry, as well as IR and Raman spectroscopy. The functionality of the POM‐labeled primers was demonstrated through hybridization with a surface‐immobilized probe. Finally, the labeled primers were successfully used in the polymerase chain reaction (PCR) and the PCR products were characterized by using electrophoresis.  相似文献   
220.
《Electroanalysis》2017,29(6):1651-1657
Gluconobacter oxydans (G. oxydans ) cells together with an osmium redox polymer (ORP) [Osmium (2,2’‐bipyridine)2(poly‐vinylimidazole)10Cl]Cl were combined with a glassy carbon paste electrode (GCPE) to form a bioanode for a microbial fuel cell (MFC) based on G. oxydans . Although there are G.oxydans / ORP combined bioanode in the literature, as far as it is known, this system is the first one where G.oxydans /ORP bioanode is combined with a cathode and a MFC is formed. After the optimization of experimental parameters, analytical characteristics of ORP/G. oxydans /GCPE bioanode were investigated. ORP/G. oxydans /GCPE showed two linear ranges for ethanol substrate as 1.0–30 mM (R2=0.902) and 30–500 mM (R2=0.997) and analytical range as 1.0–1000 mM. Limit of detection (3.0 s/m) and limit of quantification (10 s/m) values were calculated as 1.29 mM and 4.30 mM respectively where the RSD value was 1.16 % for n=5. Combining the developed bioanode in the presence of 5.0 mM K3Fe(CN)6 mediator with a Pt wire cathode a double compartment MFC was obtained via a salt bridge. G. oxydans /GCPE bioanode based MFC had maximum power density of 0.133 μW cm−2 (at 33.5 mV), maximum current density as 8.73 μA cm−2 and OCP value of 156 mV. On the other hand, ORP/G. oxydans /GCPE based MFC showed maximum power density as 0.26 μW cm−2 (at 46.8 mV), maximum current density as 15.079 μA cm‐2 and OCP value of 176 mV.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号