首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1448篇
  免费   295篇
  国内免费   168篇
化学   1855篇
晶体学   11篇
力学   1篇
综合类   3篇
物理学   41篇
  2024年   2篇
  2023年   24篇
  2022年   59篇
  2021年   94篇
  2020年   126篇
  2019年   80篇
  2018年   68篇
  2017年   61篇
  2016年   115篇
  2015年   107篇
  2014年   100篇
  2013年   142篇
  2012年   128篇
  2011年   89篇
  2010年   64篇
  2009年   63篇
  2008年   77篇
  2007年   61篇
  2006年   68篇
  2005年   54篇
  2004年   54篇
  2003年   44篇
  2002年   31篇
  2001年   20篇
  2000年   26篇
  1999年   19篇
  1998年   17篇
  1997年   26篇
  1996年   22篇
  1995年   18篇
  1994年   12篇
  1993年   5篇
  1992年   16篇
  1991年   6篇
  1990年   7篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1984年   1篇
  1983年   1篇
  1978年   1篇
排序方式: 共有1911条查询结果,搜索用时 15 毫秒
181.
182.
Galactose oxidase (GOase) is a fungal enzyme which is unusual among metalloenzymes in appearing to catalyse the two electron oxidation of primary alcohols to aldehydes and H2O2. The crystal structure of the enzyme reveals that the coordination geometry of mononuclear copper(II) ion is square pyramidal, with two histidine imidazoles, a tyrosinate, and either H2O (pH 7.0) or acetate (from buffer,pH 4-5) in the equatorial sites and a tyrosinate ligand weakly bound in the axial position. This paper summarizes the results of our studies on the structure, spectral and redox properties of certain novel models for the active site of the inactive form of GOase. The monophenolato Cu(II) complexes of the type [Cu(L1)X][H(L1) = 2-(bis(pyrid-2-ylmethyl)aminomethyl)-4-nitrophenol and X = Cl 1, NCS 2, CH3COO 3, ClO4 4] reveal a distorted square pyramidal geometry around Cu(II) with an unusual axial coordination of phenolate moiety. The coordination geometry of 3 is reminiscent of the active site of GOase with an axial phenolate and equatorial CH3COO ligands. All the present complexes exhibit several electronic and EPR spectral features which are also similar to the enzyme. Further, to establish the structural and spectroscopic consequences of the coordination of two tyrosinates in GOase enzyme, we studied the monomeric copper(II) complexes containing two phenolates and imidazole/pyridine donors as closer structural models for GOase. N,N-dimethylethylenediamine and N,N’-dimethylethylenediamine have been used as starting materials to obtain a variety of 2,4-disubstituted phenolate ligands. The X-ray crystal structures of the complexes [Cu(L5)(py)], (8) [H2(L5) = N,N-dimethyl-N’,N’-bis(2-hydroxy-4-nitrobenzyl) ethylenediamine, py = pyridine] and [Cu(L8)(H2O)] (11), [H2(L8) = N,N’-dimethyl-N,N’-bis(2-hydroxy-4-nitrobenzyl)ethylenediamine] reveal distorted square pyramidal geometries around Cu(II) with the axial tertiary amine nitrogen and water coordination respectively. Interestingly, for the latter complex there are two different molecules present in the same unit cell containing the methyl groups of the ethylenediamine fragmentcis to each other in one molecule andtrans to each other in the other. The ligand field and EPR spectra of the model complexes reveal square-based geometries even in solution. The electrochemical and chemical means of generating novel radical species of the model complexes, analogous to the active form of the enzyme is presently under investigation.  相似文献   
183.
A complex pendant with two ethynyl groups, [Fe2(μ‐SCH2CCH)2(CO)6] ( 2 ), as a model of the diiron subunit of [FeFe]‐hydrogenase was polymerized and the {Fe2(CO)6} core was successfully incorporated into the polymer matrix. The polymer was characterized by a variety of spectroscopic techniques, TGA, FTIR, SEM, TEM, and NMR. The resultant polymer was immobilized via “click” chemistry using its terminal C?CH bond onto the surface of a gold electrode, which was premodified with azidothiol by self‐assembled monolayer (SAM). The assembled electrode showed electrochemical responses. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2410–2417, 2010  相似文献   
184.
185.
Most of TM6-cluster compounds (TM = transition metal) are soluble in polar solvents, in which the cluster units commonly remain intact, preserving the same atomic arrangement as in solids. Consequently, the redox potential is often used to characterize structural and electronic features of respective solids. Although a high lability and variety of ligands allow for tuning of redox potential and of the related spectroscopic properties in wide ranges, the mechanism of this tuning is still unclear. Crystal chemistry approach was applied for the first time to clarify this mechanism. It was shown that there are two factors affecting redox potential of a given metal couple: Lever’s electrochemical parameters of the ligands and the effective ionic charge of TM, which in cluster compounds differs effectively from the formal value due to the bond strains around TM atoms. Calculations of the effective ionic charge of TMs were performed in the framework of bond valence model, which relates the valence of a bond to its length by simple Pauling relationship. It was also shown that due to the bond strains the charge depends mainly on the atomic size of the inner ligands.  相似文献   
186.
187.
Formation of micelle‐type assembly from supramolecular complexation of a surfactant and an oppositely charged homopolymer is demonstrated. The lower CAC observed for these assemblies suggest that the electrostatic interaction provides an amphiphilic homopolymer‐like structure. The stimulus‐induced disassembly of these supramolecular structures has been accomplished with variations in redox characteristics, ionic strength, and pH of the medium. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1052–1060, 2009  相似文献   
188.
The synthesis of an air‐stable series of Pd0 complexes with dissymmetric bidentate N‐heterocyclic carbene–amine ligands has been performed. The key step is an unprecedented carbene transfer from AgI to obtain electron‐rich zero‐valent palladium precatalysts. The coordination behavior of the ligands was determined with X‐ray crystallography. Surprising results were obtained in the catalysis of transfer semi‐hydrogenation, where the addition of base appeared not to be necessary to obtain the desired product stereoselectively. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
189.
190.
Heterodimer nanostructures have attracted extensive attention, owing to an increasing degree of complexity, functionality, and then importance. So far, all the reported ones are built from solid nanoparticles. Herein, nearly monodisperse heterodimer nanostructures are constructed by hollow PbSx and solid Au domains simultaneously through a mild reaction between PbS nanocrystals and the gold species in the presence of dodecylamine. Control experiments clearly reveal the underlying formation mechanism of the hollow PbSx–solid Au heterodimers. The AuIII species in the solution, lead to the etching of PbS nanocrystals and the AuI species facilitate the control of the number of gold domains per nanoparticle. Dodecylamine molecules not only work as a stabilizer in the reaction, but also act as a reducing agent that could greatly affect the morphology of the product. The optical properties of the heterodimers are investigated based on UV/Vis absorption spectroscopy and Raman spectroscopy. This novel heterodimer nanostructure pushes the development of complex nanocrystal‐based architectures forward, and also provides many opportunities for potential applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号