首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1448篇
  免费   295篇
  国内免费   168篇
化学   1855篇
晶体学   11篇
力学   1篇
综合类   3篇
物理学   41篇
  2024年   2篇
  2023年   24篇
  2022年   59篇
  2021年   94篇
  2020年   126篇
  2019年   80篇
  2018年   68篇
  2017年   61篇
  2016年   115篇
  2015年   107篇
  2014年   100篇
  2013年   142篇
  2012年   128篇
  2011年   89篇
  2010年   64篇
  2009年   63篇
  2008年   77篇
  2007年   61篇
  2006年   68篇
  2005年   54篇
  2004年   54篇
  2003年   44篇
  2002年   31篇
  2001年   20篇
  2000年   26篇
  1999年   19篇
  1998年   17篇
  1997年   26篇
  1996年   22篇
  1995年   18篇
  1994年   12篇
  1993年   5篇
  1992年   16篇
  1991年   6篇
  1990年   7篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1984年   1篇
  1983年   1篇
  1978年   1篇
排序方式: 共有1911条查询结果,搜索用时 406 毫秒
171.
The ligand-ligand redox interaction separated by di-, tri-, and hexanuclear cluster units is discussed in terms of the splitting of the redox waves (DeltaE(L)) and the comproportionation constants (Kcom(L)) of the ligand-based mixed valence state. Although two redox-active monodentate ligands in the mononuclear ruthenium(II) complexes (either cis or trans configurations) do not show appreciable splitting in their reduction waves, interestingly those separated by giant triruthenium and hexarhenium cluster units clearly show splitting. The molecular orbital considerations in the literature suggest that these units possess some pi-type molecular orbitals composed of metal dpi and possibly ligand ppi orbitals. Absence of the redox interactions in oxo-bridged diruthenium(II) and oxo-centered trirhodium(III) complexes where such pi molecular orbitals (including an antibonding one) are fully occupied, indicates the importance of empty pi* orbitals for the ligand redox communication.  相似文献   
172.
Sulfur and selenium occur in proteins as constituents of the amino acids cysteine, methionine, selenocysteine, and selenomethionine. Recent research underscores that these amino acids are truly exceptional. Their redox activity under physiological conditions allows an amazing variety of posttranslational protein modifications, metal free redox pathways, and unusual chalcogen redox states that increasingly attract the attention of biological chemists. Unlike any other amino acid, the "redox chameleon" cysteine can participate in several distinct redox pathways, including exchange and radical reactions, as well as atom-, electron-, and hydride-transfer reactions. It occurs in various oxidation states in the human body, each of which exhibits distinctive chemical properties (e.g. redox activity, metal binding) and biological activity. The position of selenium in the periodic table between the metals and the nonmetals makes selenoproteins ideal catalysts for many biological redox transformations. It is therefore apparent that the chalcogen amino acids cysteine, methionine, selenocysteine, and selenomethionine exhibit a unique biological chemistry that is the source of exciting research opportunities.  相似文献   
173.
174.
A series of novel aromatic polyamides with pyrenylamine in the backbone were prepared from a newly synthesized dicarboxylic acid monomer, N,N‐di(4‐carboxyphenyl)‐1‐aminopyrene, and various aromatic diamines via the phosphorylation polyamidation technique. These polyamides were readily soluble in many organic solvents and could be solution‐cast into tough and amorphous films. They had useful levels of thermal stability with glass‐transition temperatures in the range of 276–342 °C and 10% weight loss temperatures in excess of 500 °C. The dilute N‐methyl‐2‐pyrrolidone (NMP) solutions of these polymers exhibited fluorescence maxima around 455–540 nm with quantum yields up to 56.9%. The polyamides also showed remarkable solvatochromism of the emission spectra. Their films showed reversible electrochemical oxidation and reduction accompanied by strong color changes from colorless neutral state to purple oxidized state and to yellow reduced state. The polyamide 4g containing the pyrenylamine units in both diacid and diamine sides exhibited easily accessible p‐ and n‐doped states, together with multicolored electrochromic behaviors. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   
175.
176.
Tuning the bandgap of electrochromic polymers is one of the important research topics in electrochromism. To understand clearly the effect of donor unit in donor–acceptor–donor‐type polymers, 2,3‐bis(4‐tert‐butylphenyl)‐5,8‐di(thiophen‐2‐yl)quinoxaline and 2,3‐bis(4‐tert‐butylphenyl)‐5‐(2,3‐dihydrothieno[3,4‐b][1,4]dioxin‐ 5‐yl)‐8‐(thiophen‐2‐yl)quinoxaline were synthesized and polymerized potentiodynamically. Their electrochemical and spectroelectrochemical studies were performed, and the results were compared with those of poly(2,3‐bis(4‐tert‐butylphenyl)‐5,8‐bis(2,3‐dihydrothieno[3,4‐b][1,4]dioxin‐5‐yl)quinoxaline) (Gunbas et al., Adv Mater 2008, 20, 691–695). A blue shift in the polymer π–π* transitions revealed that the bandgap of such polymers with the same acceptor unit is related to the electron density of donor units. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   
177.
Optical and electrochemical properties of regiosymmetric and soluble alkylenedioxyselenophene‐based electrochromic polymers, namely poly(3,3‐dibutyl‐3,4‐dihydro‐2H‐selenopheno[3,4‐b][1,4]dioxephine) (PProDOS‐C4), poly(3,3‐dihexyl‐3,4‐dihydro‐2H‐selenopheno[3,4‐b][1,4]dioxephine) (PProDOS‐C6), and poly(3,3‐didecyl‐3,4‐dihydro‐2H‐selenopheno[3,4‐b][1,4]dioxephine) (PProDOS‐C10), are highlighted. It is noted that these unique polymers have low bandgaps (1.57–1.65 eV), and they are exceptionally stable under ambient atmospheric conditions. Polymer films retained 82–97% of their electroactivity after 5000 cycles. The percent transmittance of PProDOS‐Cn (n = 4, 6, 10) films found to be between 55 and 59%. Furthermore, these novel soluble PProDOS‐Cn polymers showed electrochromic behavior: a color change form pure blue to highly transparent state in a low switching time (1.0 s) during oxidation with high coloration efficiencies (328–864 cm2 C?1) when compared to their thiophene analogues. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   
178.
We present a series of novel poly(arylene ether sulfone) copolymers containing pendant oligoaniline groups. A novel monomer containing oligoaniline, 2,6‐difluorobenzoyl aniline tetramer (DFAT), was synthesized by reaction of 2,6‐difluorobenzoyl chloride and parent aniline tetramer and incorporated into the aforementioned copolymers via direct copolymerization with 4,4′‐dichlorodiphenyl sulfone (DCDPS), and 4,4′‐isopropylidene diphenol (BPA) using N,N′‐dimethylacetamide as solvent. The structures of these copolymers were confirmed by FTIR, 1H NMR, and GPC. Spectral analysis of the copolymers in different oxidation states was investigated via UV‐visible spectra. The copolymers exhibited outstanding thermal stability and good solubility in various organic solvents. Their electroactivity, explored with cyclic voltammetry, was found to increase as the content of oligoaniline in the polymer increased. The electric and dielectric properties of the copolymers were also studied in detail. The electrochromic performance of the copolymers was investigated by electrochromic photographs and transmittance spectra; the color of the copolymer thin films changes from grey (at 0.0 V), to green (at 0.4 V), to blue (at 0.6 V) and to pearl blue (at 1.0 V) and the maximum transmittance change (ΔT) at 700 nm is 42.6% (90.7% ? 48.1%). © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   
179.
In this work, a strategy for chemical synthesis of ascorbic acid functionalized polyacrylates (PAAA) was accomplished in a two‐step process, first a reversible addition fragmentation chain‐transfer (RAFT) polymerization on a benzyl‐protected ascorbyl acrylate monomer, followed by a deprotection (debenzylation) reaction. The polymers were characterized by 1H NMR, 13C NMR and gel permeation chromatograph. The polymerization ability of redox pair including PAAA and H2O2 were conducted through the measurement of 2‐hydroxyethyl acrylate (HEA) conversion against time via real‐time FT‐NIR. It was found that PAAA in the presence of H2O2, independent on itself chain length, exhibited much faster polymerization than small molecule ascorbic acid (smAA) as reductant at identical condition. Interestingly, when the concentration of ascorbate repeating unit was over some critical value, the polymerization kinetics of HEA could be tunable by simply adjusting the initial molar ratio of reductant to oxidant and environmental pH. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   
180.
The synthesis of an air‐stable series of Pd0 complexes with unsymmetric bidentate N‐pyridine N‐heterocyclic carbene ligands has been described. The carbenes were generated by synthesis of the silver(I) complexes from the imidazolium salts, followed by transmetallation of the C‐N ligands to obtain the target electron‐rich zerovalent palladium compounds. The bidentate coordination behaviour of the ligands was confirmed by 1H, 13C NMR and X‐ray spectroscopy. The complexes are active precatalysts for the selective transfer semihydrogenation of alkynes to Z‐alkenes, with selectivities up to 99%. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号