首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9192篇
  免费   695篇
  国内免费   1162篇
化学   9789篇
晶体学   49篇
力学   13篇
综合类   41篇
数学   399篇
物理学   758篇
  2024年   12篇
  2023年   82篇
  2022年   193篇
  2021年   199篇
  2020年   355篇
  2019年   302篇
  2018年   242篇
  2017年   253篇
  2016年   372篇
  2015年   327篇
  2014年   363篇
  2013年   787篇
  2012年   478篇
  2011年   535篇
  2010年   489篇
  2009年   516篇
  2008年   632篇
  2007年   617篇
  2006年   600篇
  2005年   554篇
  2004年   567篇
  2003年   473篇
  2002年   415篇
  2001年   249篇
  2000年   225篇
  1999年   174篇
  1998年   158篇
  1997年   142篇
  1996年   134篇
  1995年   103篇
  1994年   103篇
  1993年   103篇
  1992年   81篇
  1991年   45篇
  1990年   42篇
  1989年   31篇
  1988年   24篇
  1987年   12篇
  1986年   17篇
  1985年   7篇
  1984年   6篇
  1983年   4篇
  1982年   11篇
  1981年   3篇
  1980年   2篇
  1979年   2篇
  1978年   2篇
  1977年   2篇
  1974年   2篇
  1972年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
31.
A dendritic macroinitiator having 16 TEMPO‐based alkoxyamines, Star‐16 , was prepared by the reaction of a dendritic macroinitiator having eight TEMPO‐based alkoxyamines, [G‐3]‐OH , with 4,4′‐bis(chlorocarbonyl)biphenyl. The nitroxide‐mediated radical polymerization (NMRP) of styrene (St) from Star‐16 gave 16‐arm star polymers with PDI of 1.19–1.47, and NMPR of 4‐vinylpyridine from the 16‐arm star polymer gave 16‐arm star diblock copolymers with PDI of 1.30–1.43. The ring‐opening polymerization of ε‐caprolactone from [G‐3]‐OH and the subsequent NMRP of St gave AB8 9‐miktoarm star copolymers with PDI of 1.30–1.38. The benzyl ether linkages of the 16‐arm star polymers and the AB8 9‐miktoarm star copolymers were cleaved by treating with Me3SiI, and the resultant poly(St) arms were investigated by size exclusion chromatography (SEC). The SEC results showed PDIs of 1.23–1.28 and 1.18–1.22 for the star polymers and miktoarm stars copolymers, respectively, showing that they have well‐controlled poly(St) arms. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1159–1169, 2007.  相似文献   
32.
The reversible addition–fragmentation chain transfer (RAFT) polymerization of acrylonitrile (AN) mediated by 2‐cyanoprop‐2‐yl dithiobenzoate was first applied to synthesize polyacrylonitrile (PAN) with a high molecular weight up to 32,800 and a polydispersity index as low as 1.29. The key to success was ascribed to the optimization of the experimental conditions to increase the fragmentation reaction efficiency of the intermediate radical. In accordance with the atom transfer radical polymerization of AN, ethylene carbonate was also a better solvent candidate for providing higher controlled/living RAFT polymerization behaviors than dimethylformamide and dimethyl sulfoxide. The various experimental parameters, including the temperature, the molar ratio of dithiobenzoate to the initiator, the molar ratio of the monomer to dithiobenzoate, the monomer concentration, and the addition of the comonomer, were varied to improve the control of the molecular weight and polydispersity index. The molecular weights of PANs were validated by gel permeation chromatography along with a universal calibration procedure and intrinsic viscosity measurements. 1H NMR analysis confirmed the high chain‐end functionality of the resultant polymers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1272–1281, 2007  相似文献   
33.
In market, excess demands for many products can be met by reorder even during one period, and retailers usually adopt substitution strategy for more benefit. Under the retailer's substitution strategy and permission of reorder, we develop the profits maximization model for the two-substitutable-product inventory problem with stochastic demands and proportional costs and revenues. We show that the objective function is concave and submodular, and therefore the optimal policy exists. We present the optimal conditions for order quantity and provide some properties of the optimal order quantities. Comparing our model with Netessine and Rudi's, we prove that reorder and adoption of the substitution strategy can raise the general profits and adjust down the general stock level.  相似文献   
34.
岑建苗 《数学研究》1995,28(4):79-82
本文讨论临界可压缩模类和结合环的弱Jacobson根.首先,我们证明了非平凡的临界可压缩模类是素模的特殊类.其次,我们引入结合环的弱Jacobson根.弱Jaonbson根是特殊根.最后,我们给出有关弱本原环,半弱本原环和弱Jacobson根环的某些性质.  相似文献   
35.
The radical co‐ and terpolymerization of 4‐[(α,β,β‐trifluorovinyl)oxy]bromo benzene (TFVOBB) with 1,1‐difluoroethylene (or vinylidene fluoride, VDF, or VF2), hexafluoropropene (HFP), perfluoromethyl vinyl ether (PMVE), and chlorotrifluroroethylene (CTFE) is presented. Although TFVOBB could be thermocyclodimerized, it could not homopolymerize under radical initiation. TFVOBB could be copolymerized in solution under a radical initiator with VDF or CTFE comonomers, while its copolymerization with HFP or PMVE were unsuccessful. The terpolymerization of TFVOBB with VDF and HFP, or VDF and PMVE, or VDF and CTFE also led to original fluorinated terpolymers bearing bromoaromatic side‐groups. The conditions of co‐ and terpolymerization were optimized in terms of the nature of the radical initiators, and of the nature of solvents (fluorinated or nonhalogenated). Various monomer concentrations in the co‐ and terpolymers were assessed by 19F and 1H‐NMR spectroscopy. The thermal and physico chemical properties were also studied. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5077–5097, 2004  相似文献   
36.
    
From flash photolysis data of benzil and 2,2′-dichlorobenzil, the role of conformeric triplets in the formation of hydrogen adduct radicals has been discussed. The planar relaxed triplet absorbing at 470 nm is less efficient in forming a hydrogen adduct radical as compared to its puckered conformeric partner. Among the hydrogen donors, triethyl amine and isopropanol, the former is more efficient in converting puckered triplets and less efficient in the case of planar conformers. Absorptions of radicals and radical anions of 2,2′-dichlorobenzil appear at 355 nm and 460 nm respectively. These are blue-shifted as compared to those of the parent compound benzil appearing at 370 nm and 540 nm, respectively. This blue-shift has been discussed in terms of steric hindrance due to ortho-substitution.  相似文献   
37.
Homopolymerization of methyl methacrylate (MMA) was carried out in the presence of triphenylstibonium 1,2,3,4-tetraphenyl-cyclopentadienylide as an initiator in dioxane at 65°C±0·l°C. The system follows non-ideal radical kinetics (R p ∝ [M]1·4 [I]0·44 @#@) due to primary radical termination as well as degradative chain-transfer reaction. The overall activation energy and average value ofk 2 p /k t were 64 kJmol−1 and 0.173 × 10−3 1 mol−1 s−1 respectively  相似文献   
38.
The competitiveness of the combination and disproportionation reactions between a 1‐phenylpropyl radical, standing for a growing polystyryl macroradical, and a 2,2,6,6‐tetramethyl‐1‐piperidinyloxy (TEMPO) radical in the nitroxide‐mediated free‐radical polymerization of styrene was quantitatively evaluated by the study of the transition geometry and the potential energy profiles for the competing reactions with the use of quantum‐mechanical calculations at the density functional theory (DFT) UB3‐LYP/6‐311+G(3df, 2p)//(unrestricted) Austin Model 1 level of theory. The search for transition geometries resulted in six and two transition structures for the radical combination and disproportionation reactions, respectively. The former transition structures, mainly differing in the out‐of‐plane angle of the N? O bond in the transition structure TEMPO molecule, were correlated with the activation energy, which was determined to be in the range of 8.4–19.4 kcal mol?1 from a single‐point calculation at the DFT UB3‐LYP/6‐311+G(3df, 2p)//unrestricted Austin Model 1 level. The calculated activation energy for the disproportionation reaction was less favorable by a value of more than 30 kcal mol?1 in comparison with that for the combination reaction. The approximate barrier difference for the TEMPO addition and disproportionation reaction was slightly smaller for the styrene polymerization system than for the acrylonitrile polymerization system, thus indicating that a β‐proton abstraction through a TEMPO radical from the polymer backbone could diminish control over the radical polymerization of styrene with the nitroxide even more than in the latter system. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 232–241, 2007  相似文献   
39.
40.
A combination of nitroxide‐mediated radical polymerization and living anionic polymerization was used to synthesize a series of well‐defined graft (co)polymers with “V‐shaped” and “Y‐shaped” branches. The polymer main chain is a copolymer of styrene and p‐chloromethylstyrene (PS‐co‐PCMS) prepared via nitroxide‐mediated radical polymerization. The V‐shaped branches were prepared through coupling reaction of polystyrene macromonomer, carrying 1,1‐diphenylethylene terminus, with polystyryllithium or polyisoprenyllithium. The Y‐shaped branches were prepared throughfurther polymerization initiated by the V‐shaped anions. The obtained branches, carrying a living anion at the middle (V‐shaped) or at the end of the third segment (Y‐shaped), were coupled in situ with pendent benzyl chloride of PS‐co‐PCMS to form the target graft (co)polymers. The purified graft (co)polymers were analyzed by size exclusion chromatography equipped with a multiangle light scattering detector and a viscometer. The result shows that the viscosities and radii of gyration of the branched polymers are remarkably smaller than those of linear polystyrene. In addition, V‐shaped product adopts a more compact conformation in dilute solution than the Y‐shaped analogy. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4013–4025, 2007  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号