首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   255篇
  免费   31篇
  国内免费   20篇
化学   271篇
晶体学   4篇
力学   1篇
综合类   6篇
物理学   24篇
  2024年   1篇
  2023年   7篇
  2022年   15篇
  2021年   17篇
  2020年   34篇
  2019年   13篇
  2018年   9篇
  2017年   8篇
  2016年   13篇
  2015年   15篇
  2014年   6篇
  2013年   24篇
  2012年   12篇
  2011年   14篇
  2010年   6篇
  2009年   13篇
  2008年   12篇
  2007年   8篇
  2006年   8篇
  2005年   7篇
  2004年   8篇
  2003年   8篇
  2002年   8篇
  2001年   6篇
  2000年   3篇
  1999年   9篇
  1998年   4篇
  1997年   2篇
  1996年   3篇
  1995年   6篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1986年   1篇
  1983年   1篇
  1982年   1篇
排序方式: 共有306条查询结果,搜索用时 15 毫秒
11.
As concerns about the safety of lithium-ions batteries (LIBs) increases, aqueous zinc-ion batteries (ZIBs) with a lower cost, higher safety, and higher co-efficiency have attracted more and more interest. However, finding suitable cathode materials is still an urgent problem in ZIBs. In recent years, a lot of significant works have been reported, including manganese-based cathodes, vanadium-based cathodes, Prussian blue analog-based materials, and sustainable quinone cathodes. In this review, some typical cathode materials are introduced. The detailed storage mechanisms and methods for improving the reaction kinetics of the zinc ions are summarized. Finally, the issues, challenges, and the research directions are provided.  相似文献   
12.
Biodegradable primary batteries, also known as transient batteries, are essential to realize autonomous biodegradable electronic devices with high performance and advanced functionality. In this work, magnesium, copper, iron, and zinc – metals that exist as trace elements in the human body – were tested as materials for biomedical transient electronic devices. Different full cell combinations of Mg and X (where X = Cu, Fe, and Zn and the anodized form of the metals) with phosphate buffered saline (PBS) as electrolyte were studied. To form the cathodes, metal foils were anodized galvanostatically at a current density of 2.0 mA cm−2 for 30 mins. Electrochemical measurements were then conducted for each electrode combination to evaluate full cell battery performance. Results showed that the Mg−Cuanodized chemistry has the highest power density at 0.99 mW/cm2. Nominal operating voltages of 1.26 V for the first 0.50 h and 0.63 V for the next 3.7 h were observed for Mg−Cuanodized which was discharged at a current density of 0.70 mA cm−2. Among the materials tested, Mg−Cuanodized exhibited the best discharge performance with an average specific capacity of 2.94 mAh cm−2, which is comparable to previous reports on transient batteries.  相似文献   
13.
This review article provides a perspective on the synthesis of alicyclic and heterocyclic ring-fused benzimidazoles, imidazo[4,5-f]benzimidazoles, and imidazo[5,4-f]benzimidazoles. These heterocycles have a plethora of biological activities with the iminoquinone and quinone derivatives displaying potent bioreductive antitumor activity. Synthesis is categorized according to the cyclization reaction and mechanisms are detailed. Nitrobenzene reduction, cyclization of aryl amidines, lactams and isothiocyanates are described. Protocols include condensation, cross-dehydrogenative coupling with transition metal catalysis, annulation onto benzimidazole, often using CuI-catalysis, and radical cyclization with homolytic aromatic substitution. Many oxidative transformations are under metal-free conditions, including using thermal, photochemical, and electrochemical methods. Syntheses of diazole analogues of mitomycin C derivatives are described. Traditional oxidations of o-(cycloamino)anilines using peroxides in acid via the t-amino effect remain popular.  相似文献   
14.
15.
High‐Ni layered oxides are promising next‐generation cathodes for lithium‐ion batteries owing to their high capacity and lower cost. However, as the Ni content increases over 70 %, they have a high dynamic affinity towards moisture and CO2 in ambient air, primarily reacting to form LiOH, Li2CO3, and LiHCO3 on the surface, which is commonly termed “residual lithium”. Air exposure occurs after synthesis as it is common practice to handle and store them under ambient conditions. The air exposure leads to significant performance losses, and hampers the electrode fabrication, impeding their practical viability. Herein, we show that substituting a small amount of Al for Ni in the crystal lattice notably improves the chemical stability against air by limiting the formation of LiOH, Li2CO3, LiHCO3, and NiO in the near‐surface region. The Al‐doped high‐Ni oxides display a high capacity retention with excellent rate capability and cycling stability after being exposed to air for 30 days.  相似文献   
16.
The interaction of 3,6-di-tert-butyl-ortho-benzoquinone (1) and 3,5-di-tert-butyl-ortho-benzoquinone (2) with NH3 in water—alcohol medium and with (NH4)2CO3 in a solid phase has been studied. Redox processes with participation of a nucleophile of the medium take place for1, while2 reacts with NH3 at the carbonyl group with transformation of the quinone imide. The mechanism of redox transformation of1 has been proposed.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1789–1793, September, 1995.This work was carried out with financial support from the Russian Foundation for Basic Research (Project No. 94-03-08653).  相似文献   
17.
A series of arylboronic esters containing different aromatic substituents and various benzylic leaving groups (Br or N+Me3Br?) have been synthesized. The substituent effects on their reactivity with H2O2 and formation of quinone methide (QM) have been investigated. NMR spectroscopy and ethyl vinyl ether (EVE) trapping experiments were used to determine the reaction mechanism and QM formation, respectively. QMs were not generated during oxidative cleavage of the boronic esters but by subsequent transformation of the phenol products under physiological conditions. The oxidative deboronation is facilitated by electron‐withdrawing substituents, such as aromatic F, NO2, or benzylic N+Me3Br?, whereas electron‐donating substituents or a better leaving group favor QM generation. Compounds containing an aromatic CH3 or OMe group, or a good leaving group (Br), efficiently generate QMs under physiological conditions. Finally, a quantitative relationship between the structure and activity has been established for the arylboronic esters by using a Hammett plot. The reactivity of the arylboronic acids/esters and the inhibition or facilitation of QM formation can now be predictably adjusted. This adjustment is important as some applications may benefit and others may be limited by QM generation.  相似文献   
18.
Magnesium metal is a superior anode which has double the volumetric capacity of lithium metal and has a negative reduction potential of −2.37 V vs. the standard hydrogen electrode. A major benefit of magnesium is the apparent lack of dendrite formation during charging which is one of the crucial concerns of using a lithium metal anode. In this Review, we highlight the foremost research in the development of electrolytes and cathodes and discuss some of the significant challenges which must be overcome in realizing a practical magnesium battery.  相似文献   
19.
本文对几种人工光合作用反应中心系统,做一个简单的综述,其中包括叶绿素和细菌叶绿素二聚体,卟啉二聚体,卟啉-苯醌共价键络合物以及其他合成中心。  相似文献   
20.
We describe a selective aerobic oxidation of meta‐biaryl phenols that enables rapid access to functionalized phenanthrenes. Aerobic oxidations attract interest due to their efficiency, but remain underutilized in complex molecule settings due to challenges of selectivity. We discuss these issues in the context of Cu catalysis, and highlight the advantages of confining oxygen activation and substrate oxidation to the catalyst's inner‐coordination sphere. This gives rise to predictable selectivity that we use for a concise synthesis of the aporphine dehydronornuciferine.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号