首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3553篇
  免费   507篇
  国内免费   611篇
化学   3183篇
晶体学   14篇
力学   67篇
综合类   21篇
数学   32篇
物理学   1354篇
  2024年   5篇
  2023年   53篇
  2022年   179篇
  2021年   209篇
  2020年   177篇
  2019年   152篇
  2018年   130篇
  2017年   136篇
  2016年   190篇
  2015年   154篇
  2014年   172篇
  2013年   252篇
  2012年   201篇
  2011年   238篇
  2010年   209篇
  2009年   235篇
  2008年   219篇
  2007年   238篇
  2006年   232篇
  2005年   181篇
  2004年   189篇
  2003年   167篇
  2002年   111篇
  2001年   99篇
  2000年   93篇
  1999年   72篇
  1998年   67篇
  1997年   60篇
  1996年   47篇
  1995年   31篇
  1994年   35篇
  1993年   31篇
  1992年   17篇
  1991年   10篇
  1990年   13篇
  1989年   12篇
  1988年   10篇
  1987年   6篇
  1986年   4篇
  1985年   2篇
  1984年   7篇
  1983年   2篇
  1982年   4篇
  1981年   3篇
  1980年   5篇
  1979年   3篇
  1977年   4篇
  1975年   1篇
  1974年   1篇
  1972年   1篇
排序方式: 共有4671条查询结果,搜索用时 31 毫秒
141.
用失重法研究了N-甲基-2-巯基咪唑(MMI)在5%盐酸中对铜的酸洗缓蚀性能.探讨了温度和MMI浓度对缓蚀效果的影响,从中得出了MMI在铜表面的吸附等温式,计算了吸附热及MMI的加入对铜在盐酸中腐蚀反应活化能的影响,进而探讨了MMI对铜缓蚀作用的机理.结果表明, 30 ℃下,在5%盐酸中,当MMI的浓度在3 mmol•L-1和8 mmol•L-1之间时,缓蚀率随MMI浓度的增加而迅速增加,当浓度达到8 mmol•L-1时,缓蚀率趋于定值,而当浓度小于3 mmol•L-1时, MMI的加入会加速铜的腐蚀;吸附在铜表面的MMI分子间的作用力整体表现为引力; MMI在铜表面的吸附是吸热反应; MMI的加入降低了铜的腐蚀反应活化能.  相似文献   
142.
以碳纳米管(CNT)作为低铂载量膜电极(CCM)催化层(0.1 mgPt·cm-2)添加剂,研究了CNT的添加方式对催化层微观结构以及膜电极性能的影响.结果表明,与常规低铂载量催化层相比,在其表面喷涂一层CNT或将CNT均匀分散到Pt/C催化层中均有利于提升低铂载量膜电极的输出性能,在70℃和100%相对湿度条件下最高输出功率比常规低铂载量膜电极的0.522 W·cm-2分别提升了22.4%和60.0%,并且均匀分散添加方式优于分层添加方式.其原因在于分层添加CNT后改善了低铂催化层和气体扩散层之间的接触界面,降低了催化层与扩散层间的接触电阻,而均匀分散添加方式除了可降低界面接触电阻外,还显著改善了低铂催化层中的气体传输,大幅提升了Pt催化剂的利用效率,使得膜电极电化学反应电阻明显降低.进一步对均匀分散添加方式中CNT的载量进行优化,表明CNT添加量为37.5 μg·cm-2时电池输出性能最佳,70℃和100%相对湿度条件下的最大输出功率达到0.91 W·cm-2.本研究工作表明,将CNT均匀分散添加到催化层中是一种有效提升低铂载量膜电极性能的方法.  相似文献   
143.
In this work, a density function theory (DFT) study is presented for the HNS/HSN isomerization assisted by 1–4 water molecules on the singlet state potential energy surface (PES). Two modes are considered to model the catalytic effect of these water molecules: (i) water molecule(s) participate directly in forming a proton transfer loop with HNS/HSN species, and (ii) water molecules are out of loop (referred to as out‐of‐loop waters) to assist the proton transfer. In the first mode, for the monohydration mechanism, the heat of reaction is 21.55 kcal · mol?1 at the B3LYP/6‐311++G** level. The corresponding forward/backward barrier lowerings are obtained as 24.41/24.32 kcal · mol?1 compared with the no‐water‐assisting isomerization barrier T (65.52/43.87 kcal · mol?1). But when adding one water molecule on the HNS, there is another special proton‐transfer isomerization pathway with a transition state 10T′ in which the water is out of the proton transfer loop. The corresponding forward/backward barriers are 65.89/65.89 kcal · mol?1. Clearly, this process is more difficult to follow than the R–T–P process. For the two‐water‐assisting mechanism, the heat of reaction is 19.61 kcal · mol?1, and the forward/backward barriers are 32.27/12.66 kcal · mol?1, decreased by 33.25/31.21 kcal · mol?1 compared with T. For trihydration and tetrahydration, the forward/backward barriers decrease as 32.00/12.60 (30T) and 37.38/17.26 (40T) kcal · mol?1, and the heat of reaction decreases by 19.39 and 19.23 kcal · mol?1, compared with T, respectively. But, when four water molecules are involved in the reactant loop, the corresponding energy aspects increase compared with those of the trihydration. The forward/backward barriers are increased by 5.38 and 4.66 kcal · mol?1 than the trihydration situation. In the second mode, the outer‐sphere water effect from the other water molecules directly H‐bonded to the loop is considered. When one to three water molecules attach to the looped water in one‐water in‐loop‐assisting proton transfer isomerization, their effects on the three energies are small, and the deviations are not more than 3 kcal · mol?1 compared with the original monohydration‐assisting case. When adding one or two water molecules on the dihydration‐assisting mechanism, and increasing one water molecule on the trihydration, the corresponding energies also are not obviously changed. The results indicate that the forward/backward barriers for the three in‐loop water‐assisting case are the lowest, and the surrounding water molecules (out‐of‐loop) yield only a small effect. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2006  相似文献   
144.
Forsythia fruit (Forsythia suspensa Vahl (Oleaceae)) is a common component of Kampo medicines for treating the common cold, influenza, and allergies. The main polyphenolic compounds in the leaves of F. suspensa are pinoresinol β-d-glucoside, phillyrin and forsythiaside, and their levels are higher in the leaves of the plant than in the fruit. It is known that polyphenolic compounds stimulate lipid catabolism in the liver and suppress dyslipidemia, thereby attenuating diet-induced obesity and polyphenolic anti-oxidants might attenuate obesity in animals consuming high-fat diets. Recently, phillyrin was reported as a novel cyclic AMP phosphodiesterase 4 (PDE4) inhibitor derived from forsythia fruit. It was expected that the leaves of F. suspensa might display anti-obesity effects and serve as a health food material. In this review, we summarized our studies on the biological effects of forsythia leaves containing phillyrin and other polyphenolic compounds, particularly against obesity, atopic dermatitis, and influenza A virus infection, and its potential as a phytoestrogen.  相似文献   
145.
The isolation and structure elucidation of YM-254890, a novel Gq/11 inhibitor from Chromobacterium sp. QS3666, is described. The gross structure was determined by one- and two-dimensional NMR studies and mass spectrometry. YM-254890 is a cyclic depsipeptide containing uncommon amino acids; β-hydroxyleucine (two residues), N,O-dimethylthreonine and N-methyldehydroalanine. YM-254890 exists as a mixture of two conformers in a variety of NMR solvents, and the distinction between major and minor conformers appears to lie in the geometry of the amide bond between 3-phenyllactic acid and N-methyldehydroalanine. The absolute stereochemistery was elucidated by Marfey's analysis and chiral HPLC analysis of the acid hydrolysate of YM-254890.  相似文献   
146.
The (p,ρ,T) and (ps,ρs,Ts) properties of {(1−x)CH3OH + xLiBr} over a wide range of state parameters are reported for the first time. The experiments were carried out in a constant volume piezometer over a temperature range from 298.15 K to 398.15 K, at 0.08421, 0.13617, 0.19692, 0.23133 and 0.26891 mole fractions and from atmospheric pressure up to 60 MPa. The experimental uncertainties are ΔT=±3 mK for temperature, Δp=±5·10−2 MPa for high pressure and Δp=±5·10−4 MPa for atmospheric pressure, Δρ=±3·10−2 kg · m−3 for density. An equation of state was derived for correlation of the experimental data of the solutions.  相似文献   
147.
Baseline separation of ten new substituted [1-(imidazo-1-yl)-1-phenylmethyl)] benzothiazolinone and benzoxazolinone derivatives, with one chiral center, was achieved by CD-EKC using highly sulfated CDs (alpha, beta, gamma highly S-CDs) as chiral selectors. The influence of the type and concentration of the chiral selectors on the enantioseparations was investigated. The highly S-CDs exhibit a very high enantioselectivity power since they allow excellent enantiomeric resolutions compared to those obtained with the neutral CDs. The enantiomers were resolved with analysis times inferior to 2.5 min and resolution factors R(s) of 3.73, 3.90, 1.40, and 4.35 for compounds 1, 2, 3, and 5, respectively, using 25 mM phosphate buffer at pH 2.5 containing either highly S-alpha-CD, highly S-beta-CD, and highly S-gamma-CD (3 or 4% w/v) at 298 K, with an applied field of 0.30 kV/cm. The determination of the enantiomer migration order for the various analytes and the study of the analyte structure-enantioseparation relationships display the high contribution of the interactions between the analytes phenyl ring and the CDs to the enantiorecognition process. The thermodynamic study of the analyte-CD affinities permits us to improve our knowledge about the enantioseparation mechanism.  相似文献   
148.
This paper describes a copper selective optical chemical sensor based on static quenching of the fluorescence of 2-(2′-hydroxyphenyl)benzoxazole entrapped in a poly(vinyl chloride) (PVC) membrane. The effect of the composition of the sensing membrane was studied, and experimental conditions were optimized. The sensors exhibit stable response over the concentration range from 4.0 × 10−8 M to 5.0 × 10−5 M Cu2+ at pH 4.0-6.5, and a high selectivity. The response time for Cu2+ with concentration ≤5 × 10−6 M is less than 7 min. The optode can be regenerated using 0.1 M HCl and acetate buffer solution. The sensor has been used for direct measurement of copper content in river water samples with a relative error less than 4% with reference to that obtained by atomic absorption spectrometry.  相似文献   
149.
Apart from the long known visual pigments, another retinal protein complex exists in nature, viz. bacteriorhodopsin from halobacteria. In contrast to the visual pigments such as the rhodopsins, which act as light sensors in the eye, bacteriorhodopsin actually transforms light energy. This energy conversion is connected with the asymmetric incorporation of bacteriorhodopsin in the lattice structure of the purple membrane which forms patches on the cell surface of halobacteria. Alongside the chlorophyll system, the purple membrane system represents the second light energy conversion principle to be discovered in living nature. Bacteriorhodopsin acts as a light-driven proton pump or as the main component of such a pump system. Absorption of light triggers off a cycle of reactions coupled with the spatially oriented uptake and release of a proton. In the intact cell an electrochemical gradient is thus built up across the cell membrane of the bacterium in which part of the absorbed light energy is stored and which is not dependent upon redox processes as in the case of respiration or photosynthesis. This electrochemical gradient can supply the energy required for ATP synthesis in the cell; a reversible proton-translocating ATPase serves as catalyst system.  相似文献   
150.
Phosphonomethylphenylalanine (Pmp, 2) has shown wide utility as a hydrolytically stable phosphtyrosyl (pTyr, 1) mimetic, particularly in Src homology 2 (SH2) domain-binding peptides. (2S,3R)-3-(4-(phosphonomethyl)phenyl)pipecolic acid (3) represents a variant of Pmp having φ and χ1 torsion angles constrained through incorporation into the piperidinyl ring structure contained within pipecolic acid. Reported herein is the enantioselective preparation of 3, in an orthogonally protected form (4) suitable for use in peptide synthesis. Stereochemistries at both the 2- and 3-positions are derived inductively from a single chiral center provided by the commercially available Evans chiral auxiliary, (4S)-4-benzyl-1,3-oxazolidin-2-one. Incorporation of 4 into a Grb2 SH2 domain-directed tripeptide (18) showed that Grb2 SH2 domain-binding affinity was reduced relative to the parent Pmp-containing tripeptide (19). Although conformational constraint did not enhance affinity in this case, novel amino acid analogue 4 may serve as a useful tool for the induction of defined phosphotyrosyl geometry in peptides directed at other signal transduction targets.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号