首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9552篇
  免费   1068篇
  国内免费   1675篇
化学   9480篇
晶体学   48篇
力学   209篇
综合类   75篇
数学   344篇
物理学   2139篇
  2024年   20篇
  2023年   103篇
  2022年   225篇
  2021年   331篇
  2020年   377篇
  2019年   312篇
  2018年   261篇
  2017年   285篇
  2016年   407篇
  2015年   369篇
  2014年   411篇
  2013年   750篇
  2012年   658篇
  2011年   554篇
  2010年   516篇
  2009年   630篇
  2008年   739篇
  2007年   593篇
  2006年   593篇
  2005年   553篇
  2004年   490篇
  2003年   447篇
  2002年   354篇
  2001年   285篇
  2000年   284篇
  1999年   235篇
  1998年   222篇
  1997年   188篇
  1996年   188篇
  1995年   154篇
  1994年   149篇
  1993年   137篇
  1992年   100篇
  1991年   67篇
  1990年   51篇
  1989年   55篇
  1988年   39篇
  1987年   34篇
  1986年   27篇
  1985年   11篇
  1984年   23篇
  1983年   8篇
  1982年   13篇
  1981年   8篇
  1980年   6篇
  1979年   9篇
  1978年   4篇
  1977年   8篇
  1976年   5篇
  1975年   3篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
81.
设$(A,B,V,W,\psi,\phi)$是一个Morita Context,具有一对零态射$\psi=0$, $\phi=0$, $C =\left ( \begin{array} {cc}A & V \\W & B \end{array}\right)$是对应的Morita Context环.本文给出了$C$与$A,B,V,W$之间关于环的$\pi$-正则性、semiclean性、Mophic性和环的Exchgange性、Potent性、GM性的关系.  相似文献   
82.
微加工薄膜变形镜特性分析   总被引:7,自引:0,他引:7       下载免费PDF全文
 借助测量微加工薄膜变形镜驱动器的面形影响函数,分析了驱动器的电压-位移函数和驱动器之间的线性叠加性;通过对连续面形变形镜拟合像差的理论分析和实验研究,建立了微加工薄膜变形镜电压解耦模型。分析了对前36阶Zernike模式的拟合残差和拟合能力,指出微加工薄膜变形镜仅可用来拟合低级像差并且有较大的拟合能力和较小的拟合残差,而不能拟合高级像差。  相似文献   
83.
陈焕艮  陈淼森 《数学进展》2006,35(1):120-124
本文证明了置换环上的正则稳定矩阵是幂等矩阵和可逆矩阵的积,进一步证明了置换环上的正则稳定矩阵可以对角化。  相似文献   
84.
A series of branched/crosslinked sulfonated polyimide (B/C‐SPI) membranes were prepared and evaluated as proton‐conducting ionomers based on the new concept of in situ crosslinking from sulfonated polyimide (SPI) oligomers and triamine monomers. Chemical branching and crosslinking in SPI oligomers with 1,3,5‐tris(4‐aminophenoxy)benzene as a crosslinker gave the polymer membranes very good water stability and mechanical properties under an accelerated aging treatment in water at 130 °C, despite their high ion‐exchange capacity (2.2–2.6 mequiv g?1). The resulting polymer electrolytes displayed high proton conductivities of 0.2–0.3 S cm?1 at 120 °C in water and reasonably high conductivities of 0.02–0.03 S cm?1 at 50% relative humidity. In a single H2/O2 fuel‐cell system at 90 °C, they exhibited high fuel‐cell performances comparable to those of Nafion 112. The B/C‐SPI membranes also displayed good performances in a direct methanol fuel cell with methanol concentrations as high as 50 wt % that were superior to those of Nafion 112. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3751–3762, 2006  相似文献   
85.
The sulfonated poly(ether ether ketone sulfone) (SPEEKS)/heteropolyacid (HPA) composite membranes with different HPA content in SPEEKS copolymers matrix with different degree of sulfonation (DS) were investigated for high temperature proton exchange membrane fuel cells. Composite membranes were characterized by Fourier transfer infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). FTIR band shifts suggested that the sulfonic acid groups on the copolymer backbone strongly interact with HPA particles. SEM pictures showed that the HPA particles were uniformly distributed throughout the SPEEKS membranes matrix and particle sizes decreased with the increment of copolymers' DS. The holes were not found in SPEEKS‐4/HPA30 (consisting of 70% SPEEKS copolymers with DS = 0.8 and 30% HPA) composite membrane after composite membranes were treated with boiling water for 24 h. Thermal stabilities of the composite membranes were better than those of pure sulfonated copolymers membranes. Although the composite membranes possessed lower water uptake, it exhibited higher proton conductivity for SPEEKS‐4/HPA30 especially at high temperature (above 100 °C). Its proton conductivity linearly increased from 0.068 S/cm at 25 °C to 0.095 S/cm at 120 °C, which was higher than 0.06 S/cm of Nafion 117. In contrast, proton conductivity of pure SPEEKS‐4 membrane only increased from 0.062 S/cm at 25 °C to 0.078 S/cm at 80 °C. At 120 °C, proton conductivity decreased to poor 0.073 S/cm. The result indicated that composite membranes exhibited high proton conductivity at high temperature. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1967–1978, 2006  相似文献   
86.
The direct methanol fuel cell (DMFC) has the potential to replace lithium‐ion rechargeable batteries in portable electronic devices, but currently experiences significant power density and efficiency losses due to high methanol crossover through polymer electrolyte membranes (PEMs). Numerous publications document the synthesis and characterization of new PEMs for the DMFC. This article reviews this research, transport phenomena in PEMs, and experimental techniques used to evaluate new PEMs for the DMFC. Although many PEMs do not show significant improvements over Nafion®, the benchmark PEM in DMFCs, experimental results show that several new PEMs exhibit lower methanol crossover at similar proton conductivities and/or higher DMFC power densities. These results and recommendations for future research are discussed. © 2006 Wiley Periodicals, Inc. J Polym Sci Parts B: Polym Phys 44: 2201–2225, 2006  相似文献   
87.
The life of proton exchange membrane fuel cells (PEMFC) is currently limited by the mechanical endurance of polymer electrolyte membranes and membrane electrode assemblies (MEAs). In this paper, the authors report recent experimental and modeling work toward understanding the mechanisms of delayed mechanical failures of polymer electrolyte membranes and MEAs under relevant PEMFC operating conditions. Mechanical breach of membranes/MEAs in the form of pinholes and tears has been frequently observed after long‐term or accelerated testing of PEMFC cells/stacks. Catastrophic failure of cell/stack due to rapid gas crossover shortly follows the mechanical breach. Ex situ mechanical characterizations were performed on MEAs after being subjected to the accelerated chemical aging and relative humidity (RH) cycling tests. The results showed significant reduction of MEA ductility manifested as drastically reduced strain‐to‐failure of the chemically aged and RH‐cycled MEAs. Postmortem analysis revealed the formation and growth of mechanical defects such as cracks and crazing in the membranes and MEAs. A finite element model was used to estimate stress/strain states of an edge‐constrained MEA under rapid RH variations. Damage metrics for accelerated testing and life prediction of PEMFCs are discussed. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2346–2357, 2006  相似文献   
88.
A series of sulfonated poly(aryl ether ether ketone ketone)s statistical copolymers with high molecular weights were synthesized via an aromatic nucleophilic substitution polymerization. The sulfonation content (SC), defined as the number of sulfonic acid groups contained in an average repeat unit, could be controlled by the feed ratios of monomers. Flexible and strong membranes in sodium sulfonate form could be prepared by the solution casting method, and readily transformed to their proton forms by treating them in 2 N sulfuric acid. The polymers showed high Tgs, which increased with an increase in SC. Membranes prepared from the present sulfonated poly(ether ether ketone ketone) copolymers containing the hexafluoroisopropylidene moiety (SPEEKK‐6F) and copolymers containing the pendant 3,5‐ditrifluoromethylphenyl moiety (SPEEKK‐6FP) had lower water uptakes and lower swelling ratios in comparison with previously prepared copolymers containing 6F units. All of the polymers possessed proton conductivities higher than 1 × 10?2 S/cm at room temperature, and proton conductivity values of several polymers were comparable to that of Nafion at high relative humidity. Their thermal stability, oxidative stability, and mechanical properties were also evaluated. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2299–2310, 2006  相似文献   
89.
Efficient vectorial processes such as the transduction of bioenergy and signals are characteristics that strikingly distinguish living systems from inanimate materials. Recent developments in biophysical and biochemical techniques have provided new information about the structure, dynamics and interaction of biomolecules involved in vectorial life processes at multiple length and temporal scales. This wealth of data makes it possible to carry out theoretical and computational studied of key mechanistic questions associated with complex life processes at an unprecedented level. Using two “vectorial biomolecular machines”, myosin and cytochrome c oxidase, as examples, we discuss the identification of interesting and biologically relevant questions that require thorough theoretical analysis. Technical challenges and recent progress related to these theoretical investigations are briefly summarized  相似文献   
90.
The method of condensed matter physics is applied to reason out the problem of Na transport through a biological membrane. A similiarity of gating process in Na ion channel to the superionic phase transition is discussed. A possible microscopic mechanism is suggested.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号