首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5236篇
  免费   742篇
  国内免费   421篇
化学   5561篇
晶体学   29篇
力学   17篇
综合类   92篇
数学   40篇
物理学   660篇
  2024年   9篇
  2023年   88篇
  2022年   343篇
  2021年   322篇
  2020年   325篇
  2019年   194篇
  2018年   179篇
  2017年   174篇
  2016年   298篇
  2015年   288篇
  2014年   308篇
  2013年   384篇
  2012年   388篇
  2011年   300篇
  2010年   302篇
  2009年   360篇
  2008年   296篇
  2007年   271篇
  2006年   267篇
  2005年   246篇
  2004年   224篇
  2003年   156篇
  2002年   100篇
  2001年   87篇
  2000年   80篇
  1999年   96篇
  1998年   70篇
  1997年   60篇
  1996年   32篇
  1995年   29篇
  1994年   27篇
  1993年   20篇
  1992年   18篇
  1991年   15篇
  1990年   5篇
  1989年   5篇
  1988年   7篇
  1987年   2篇
  1986年   10篇
  1985年   3篇
  1984年   4篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1978年   1篇
排序方式: 共有6399条查询结果,搜索用时 0 毫秒
51.
Scoring functions: A view from the bench   总被引:2,自引:0,他引:2  
Computational approaches to drug design are presently hindered by the complexity of the physical chemistry which underlies weak, non- covalent interactions between protein targets and small molecule ligands. Although a number of programs are now available for the design of novel potential ligands, it remains a key problem to rank these rapidly and reliably by estimated binding affinity. Such a step is necessary to select only the most promising candidates for synthesis and experimental characterisation. To calculate ligand affinity quickly and reliably is an extremely difficult problem, but it may well prove possible to estimate sufficiently accurately given an appropriate set of parameters to score individual protein–ligand interactions. Improvements in the situation will require a wider set of thermodynamically characterised systems than is currently available.  相似文献   
52.
Reassembly of protein from its peptide fragments is a technique that can have many applications in the bioanalytical field. Typically, a reporter protein fragmented into its two peptides is employed as a label in this study. This fragments of peptide can reassemble yielding an active functional reporter. This reassembly of the protein can be assisted by non-covalently interacting peptides or proteins, which are attached to the fragmented reporter. This technique has been employed in several applications including study of protein–protein interactions, antibody screening, immunoassays, and high-throughput screening. This review focuses on different reporters employed in the study of reassembly of proteins and applications of this strategy in bioanalysis.  相似文献   
53.
We adapted the genetic algorithm to minimize the AMBER potential energy function. We describe specific recombination and mutation operators for this task. Next we use our algorithm to locate low energy conformation of three polypeptides (AGAGAGAGA, A9, and [Met]-enkephalin) which are probably the global minimum conformations. Our potential energy minima are –94.71, –98.50, and –48.94 kcal/mol respectively. Next, we applied our algorithm to the 46 amino acid protein crambin and located a non-native conformation which had an AMBER potential energy 150 kcal/mol lower than the native conformation. This is not necessarily the global minimum conformation, but it does illustrate problems with the AMBER potential energy function. We believe this occurred because the AMBER potential energy function does not account for hydration.  相似文献   
54.
We have developed a process that significantly reduces the number of rotamers in computational protein design calculations. This process, which we call Vegas, results in dramatic computational performance increases when used with algorithms based on the dead-end elimination (DEE) theorem. Vegas estimates the energy of each rotamer at each position by fixing each rotamer in turn and utilizing various search algorithms to optimize the remaining positions. Algorithms used for this context specific optimization can include Monte Carlo, self-consistent mean field, and the evaluation of an expression that generates a lower bound energy for the fixed rotamer. Rotamers with energies above a user-defined cutoff value are eliminated. We found that using Vegas to preprocess rotamers significantly reduced the calculation time of subsequent DEE-based algorithms while retaining the global minimum energy conformation. For a full boundary design of a 51 amino acid fragment of engrailed homeodomain, the total calculation time was reduced by 12-fold.  相似文献   
55.
To determine the influence of various culture conditions, transformed cells of Escherichia coli expressing recombinant green fluorescent protein (GFPuv) were grown in nine cultures with four variable conditions (storage of inoculated broth at 4°C prior to incubation, agitation speed, isopropyl-β-d-thiogalactopyranoside [IPTG] concentration, and induction time). The pelleted cells were resuspended in extraction buffer and subjected to the three-phase partitioning (TPP) extraction method. To determine the most appropriate purification resin, protein extracts were eluted through one of four types of HiTrap hydrophobic interaction chromatography (HIC) columns prepacked with methyl, butyl, octyl, or phenyl resins and analyzed further on a 12% sodium dodecylsulfatepolyacrylamidegel. With Coomassie staining, a single band between 27 (standard GFPuv) and 29 kDa (molecular weight standard) was visualized for every HIC column sample. TPP extraction with HIC elution provided about 90% of the GFPuv recovered and eight-fold GFPuv enrichment related to the specific mass. Rotary speed and IPTG concentration showed, respectively, greater negative and positive influences on GFPuv expression at the beginning of the logarithmic phase for the set culture conditions (37°C, 24-h incubation).  相似文献   
56.
1 INTRODUCTION Many plants contain proteins that are capable of inactivating ribosomes and therefore are called ribosome-inactivating proteins or RIPs[1]. RIPs are RNA N-glycosidases that inactivate ribosomes through a site-specific deadenylation of the large ribosomal RNA[2, 3]. RIPs are also capable of inactivating many nonribosomal nucleic acid substrates and can be considered as polynucleotide: adenosine glycosidases[4~6]. There are two types of RIPs: type I, single chain pr…  相似文献   
57.
Exact rotamer optimization for protein design   总被引:1,自引:0,他引:1  
Computational methods play a central role in the rational design of novel proteins. The present work describes a new hybrid exact rotamer optimization (HERO) method that builds on previous dead-end elimination algorithms to yield dramatic performance enhancements. Measured on experimentally validated physical models, these improvements make it possible to perform previously intractable designs of entire protein core, surface, or boundary regions. Computational demonstrations include a full core design of the variable domains of the light and heavy chains of catalytic antibody 48G7 FAB with 74 residues and 10(128) conformations, a full core/boundary design of the beta1 domain of protein G with 25 residues and 10(53) conformations, and a full surface design of the beta1 domain of protein G with 27 residues and 10(60) conformations. In addition, a full sequence design of the beta1 domain of protein G is used to demonstrate the strong dependence of algorithm performance on the exact form of the potential function and the fidelity of the rotamer library. These results emphasize that search algorithm performance for protein design can only be meaningfully evaluated on physical models that have been subjected to experimental scrutiny. The new algorithm greatly facilitates ongoing efforts to engineer increasingly complex protein features.  相似文献   
58.
The technique of three-phase partitioning (TPP) was used to purify the green fluorescent protein (GFP) in a single step. TPP uses a combination of ammonium sulphate and tert-butanol to precipitate proteins from their crude extracts. In the first round of TPP with 20% ammonium sulphate saturation at the ratio of crude to tert-butanol 1:1 (v/v), most of the GFP remains in the lower aqueous phase. When subjected to a second round of TPP with 60% ammonium sulphate saturation at the ratio of crude to tert-butanol 1:2 (v/v) gives 78% recovery of GFP with a 20-fold purification. The sodium dodecyl sulphate-polyacrylamide gel electrophoretic (SDS-PAGE) analysis of purified preparation shows single band. The fluorescence excitation and emission spectra agreed with values reported in literature.  相似文献   
59.
The alpha-helical coiled coils have a representative amino acid sequence of (abcdefg)(n) heptad repeats. We previously reported that two peptides named IZ-2A and IZ-2W formed an (IZ-2A)(2)/IZ-2W heterotrimer with an Ala-Ala-Trp interaction in the hydrophobic core. In this paper, we describe the selective formation of AAB- and ABC-type heterotrimers. To increase the selectivity of the AAB-type heterotrimeric formation, Lys residues at the f position were mutated to either an Ala or a Gln residue to form IZ-2A(fA) or IZ-2W(fQ). Separately, both IZ-2A(fA) and IZ-2W(fQ) have a random structure at pH 7 and 20 degrees C. However, together IZ-2A(fA) and IZ-2W(fQ) form a 2:1 complex with a thermal transition midpoint (Tm) of 48 degrees C. This procedure was applied to prepare the ABC-type heterotrimer, in which two sets of Ala-Ala-Trp interactions were designed in the hydrophobic core. Interhelical interaction between the e and g positions and the alpha-helical propensity of the amino acid at the f position were also considered in the design. The resultant three peptides selectively formed the ABC-type heterotrimer with a Tm of 51 degrees C. Other peptide combinations had random coil properties.  相似文献   
60.
Various computational approaches, using molecular mechanics (Amber), semiempirical (AM1), density functional (B3LYP), and various ONIOM methods, have been comparatively investigated for the structure of Escherichia coli NifS CsdB protein. The structure of the entire monomer containing 407 amino acid residues and 579 surrounding water molecules has been optimized. The full geometry optimization in the "active site-only" approach (including only active site atoms) has been found to give the largest root-mean-square (RMS) deviation from the X-ray structure; a much better agreement has been achieved by keeping the atoms leading to the backbones of some amino acids frozen in their positions in the X-ray structure. The best agreement has been attained by including the surrounding protein in the calculations using the two-layer ONIOM (B3LYP:Amber) approach. The results presented in this study conclusively demonstrate the importance of the protein/active-site interaction on the active-site structure of the enzyme. The present theoretical study represents the largest system studied at the ONIOM level to date, containing 7992 atoms, including 84 atoms in the QM region and rest in the MM region.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号