首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2305篇
  免费   247篇
  国内免费   63篇
化学   746篇
晶体学   1篇
力学   88篇
综合类   74篇
数学   792篇
物理学   914篇
  2024年   21篇
  2023年   127篇
  2022年   492篇
  2021年   396篇
  2020年   228篇
  2019年   155篇
  2018年   116篇
  2017年   109篇
  2016年   119篇
  2015年   78篇
  2014年   88篇
  2013年   151篇
  2012年   49篇
  2011年   52篇
  2010年   58篇
  2009年   52篇
  2008年   42篇
  2007年   53篇
  2006年   29篇
  2005年   24篇
  2004年   19篇
  2003年   15篇
  2002年   16篇
  2001年   6篇
  2000年   13篇
  1999年   10篇
  1998年   8篇
  1997年   14篇
  1996年   8篇
  1995年   14篇
  1994年   3篇
  1993年   1篇
  1992年   3篇
  1991年   4篇
  1990年   3篇
  1989年   3篇
  1988年   6篇
  1987年   3篇
  1986年   9篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1981年   1篇
  1979年   3篇
  1977年   2篇
  1971年   1篇
  1969年   1篇
  1959年   5篇
排序方式: 共有2615条查询结果,搜索用时 15 毫秒
31.
"教-学-评一体化"的课堂是指围绕教学目标,教师的教学、学生的学习以及教师对学生的评价组成一个有机的、整体的有效课堂.教学"有效"的唯一证据在于目标的达成,在于学生学习结果的质量,在于何以证明学生学会了什么.因此,教学中要关注对学生的评价.本文以"示波器的原理——带电粒子在电场中的偏转"为例,论述在"教-学-评一体化"的课堂中如何用评价促进学生思维发展.  相似文献   
32.
《Physics letters. A》2020,384(24):126595
The Harrow-Hassidim-Lloyd (HHL) algorithm is a method to solve the quantum linear system of equations that may be found at the core of various scientific applications and quantum machine learning models including the linear regression, support vector machines and recommender systems etc. After reviewing the necessary background on elementary quantum algorithms, we provide detailed account of how HHL is exploited in different quantum machine learning (QML) models, and how it provides the desired quantum speedup in all these models. At the end, we briefly discuss some of the remaining challenges ahead for HHL-based QML models and related methods.  相似文献   
33.
The accurate prediction of the solar diffuse fraction (DF), sometimes called the diffuse ratio, is an important topic for solar energy research. In the present study, the current state of Diffuse irradiance research is discussed and then three robust, machine learning (ML) models are examined using a large dataset (almost eight years) of hourly readings from Almeria, Spain. The ML models used herein, are a hybrid adaptive network-based fuzzy inference system (ANFIS), a single multi-layer perceptron (MLP) and a hybrid multi-layer perceptron grey wolf optimizer (MLP-GWO). These models were evaluated for their predictive precision, using various solar and DF irradiance data, from Spain. The results were then evaluated using frequently used evaluation criteria, the mean absolute error (MAE), mean error (ME) and the root mean square error (RMSE). The results showed that the MLP-GWO model, followed by the ANFIS model, provided a higher performance in both the training and the testing procedures.  相似文献   
34.
Convolutional neural networks utilize a hierarchy of neural network layers. The statistical aspects of information concentration in successive layers can bring an insight into the feature abstraction process. We analyze the saliency maps of these layers from the perspective of semiotics, also known as the study of signs and sign-using behavior. In computational semiotics, this aggregation operation (known as superization) is accompanied by a decrease of spatial entropy: signs are aggregated into supersign. Using spatial entropy, we compute the information content of the saliency maps and study the superization processes which take place between successive layers of the network. In our experiments, we visualize the superization process and show how the obtained knowledge can be used to explain the neural decision model. In addition, we attempt to optimize the architecture of the neural model employing a semiotic greedy technique. To the extent of our knowledge, this is the first application of computational semiotics in the analysis and interpretation of deep neural networks.  相似文献   
35.
For central nervous system disorders'' rehabilitation, it is important to accurately understand motor control and implement an appropriate motor learning process to induce neuroplastic changes. The neurophysiological studies have revealed that neural control mechanisms are crucial during both the onset of muscular activities and muscle release after contraction. When performing various movements during daily activities, muscle relaxation control enables precise force output and timing control. Moreover, surround inhibition is a functional mechanism in the motor system. Surround inhibition of the motor system may be involved in the selective execution of desired movements. This review demonstrates cortical excitability resulting from motor learning, movement control mechanisms including muscle relaxation and the suppression of nontarget muscle groups, and the voluntary drive''s importance that is required for movement.  相似文献   
36.
通过引入经验覆盖数(empirical covering number)和投影算子(projection-operator),从理论上研究正则化最小二乘回归学习算法.与已有的方法相比,一方面简化了回归分析的过程;另一方面,提高了最小二则回归学习算法的误差收敛阶.即,通过引入投影算子,得到了O(m-1)型的收敛阶,这是统计学习理论中关于泛化误差的最佳逼近阶.  相似文献   
37.
羊毛制品因其柔软、保暖性好等优点广受欢迎,羊毛含量是衡量这类产品质量的重要依据。目前市场上羊毛制品质量参差不齐,传统检测方法具有破坏性大、主观性强等缺点,已无法满足实时快速评估目标羊毛制品质量情况的需求。近红外光谱技术是一种无需破坏样品结构、可模型封装操作的快速测量方法。将近红外光谱技术和深度学习技术融合,提出了一种基于注意力机制和U-Net++网络的羊毛含量快速定性分析方法。在数据准备方面,使用手持便携式光谱仪采集羊毛制品样本的光谱数据,其波段范围为908.1~1 676.2 nm,并根据其含量的不同对原始样本进行了等级划分。为减少光谱采集方式对建模数据集的影响,针对同一样本在距探头5, 6, 8, 9和19 mm 5种高度,分别采集了5次光谱数据,并使用马氏距离法剔除异常样本,最终共5 125组光谱数据用于建模。在模型选择方面,U-Net++网络可通过下采样、跳跃连接和上采样等环节实现对光谱数据的特征提取,并进一步对样本进行分类预测。然而,该网络使用了大量密集的跳跃连接,易产生模型参数冗余、低层特征被重复使用等问题。鉴于此,在原始网络的基础上引入了注意力门控模块,可以更有效地提取特...  相似文献   
38.
多通道磁共振成像方法采用多个接收线圈同时欠采样k空间以加快成像速度,并基于后处理算法重建图像,但在较高加速因子时,其图像重建质量仍然较差.本文提出了一种基于PCAU-Net的快速多通道磁共振成像方法,将单通道实数U型卷积神经网络拓展到多通道复数卷积神经网络,设计了一种结构不对称的U型网络结构,通过在解码部分减小网络规模以降低模型的复杂度.PCAU-Net网络在跳跃连接前增加了1×1卷积,以实现跨通道信息交互.输入和输出之间利用残差连接为误差的反向传播提供捷径.实验结果表明,使用规则和随机采样模板,在不同加速因子时,相比常规的GRAPPA重建算法和SPIRiT重建方法,本文提出的PCAU-Net方法可高质量重建出磁共振复数图像,并且相比于PCU-Net方法,PCAU-Net减少了模型参数、缩短了训练时间.  相似文献   
39.
Optical performance monitoring (OPM) is essential to guarantee the robust and reliable operation of few-mode fiber (FMF)-based transmission. The available OPM methods including the analytical models such as the enhanced Gaussian noise model provide high accuracy along with high computational complexity which makes them improper for real-time implementations. As an alternative approach, machine learning (ML)-based OPM removes this barrier at the cost of leveraging a large training dataset. However, generating a field or synthetic dataset for FMF-based transmission is very hard and time-consuming. As a specific ML deployment, active learning (AL) is designed to work with a small training dataset, therefore, in this paper, we employ AL for OPM in FMF-based transmission. Results indicate that the proposed AL-based OPM can properly estimate the generalized signal-to-noise ratio by using a very small training dataset and achieve the root mean squared error similar to that obtained by working on large training datasets.  相似文献   
40.
领域分类结构的抽取已成为本体工程和本体学习的关键部分,提出一种新的分类结构学习算法,将Web作为知识获取的语料库,运用迭代方法抽取相关语言学模式,再利用语言学模式抽取分类结构,并采用改进的互信息方法对结果进行评价和过滤,最后通过实验对该分类学习算法的性能进行评价.实验表明:算法具有良好的跨领域性,在准确率和召回率方面也有改善.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号