首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2893篇
  免费   426篇
  国内免费   306篇
化学   1630篇
晶体学   40篇
力学   152篇
综合类   95篇
数学   314篇
物理学   1394篇
  2024年   17篇
  2023年   41篇
  2022年   151篇
  2021年   166篇
  2020年   134篇
  2019年   81篇
  2018年   82篇
  2017年   146篇
  2016年   175篇
  2015年   115篇
  2014年   170篇
  2013年   156篇
  2012年   156篇
  2011年   179篇
  2010年   129篇
  2009年   155篇
  2008年   153篇
  2007年   186篇
  2006年   167篇
  2005年   152篇
  2004年   167篇
  2003年   136篇
  2002年   149篇
  2001年   79篇
  2000年   58篇
  1999年   62篇
  1998年   56篇
  1997年   36篇
  1996年   23篇
  1995年   22篇
  1994年   22篇
  1993年   18篇
  1992年   16篇
  1991年   12篇
  1990年   6篇
  1989年   7篇
  1988年   11篇
  1987年   4篇
  1986年   8篇
  1985年   3篇
  1984年   6篇
  1983年   4篇
  1982年   3篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1974年   1篇
  1971年   1篇
排序方式: 共有3625条查询结果,搜索用时 15 毫秒
111.
Developing new green solvents is one of the key subjects in Green Chemistry. Ionic liquids (ILs) and deep eutectic solvents, thus, have been paid great attention to replace current harsh organic solvents and have been applied to many chemical processing such as extraction and synthesis. However, current ionic liquids and deep eutectic solvents have still limitations to be applied to a real chemical industry due to toxicity against human and environment and high cost of ILs and solid state of most deep eutectic solvents at room temperature. Recently we discovered that many plant abundant primary metabolites changed their state from solid to liquid when they were mixed in proper ratio. This finding made us hypothesize that natural deep eutectic solvents (NADES) play a role as alternative media to water in living organisms and tested a wide range of natural products, which resulted in discovery of over 100 NADES from nature. In order to prove deep eutectic feature the interaction between the molecules was investigated by nuclear magnetic resonance spectroscopy. All the tested NADES show clear hydrogen bonding between components. As next step physical properties of NADES such as water activity, density, viscosity, polarity and thermal properties were measured as well as the effect of water on the physical properties. In the last stage the novel NADES were applied to the solubilization of wide range of biomolecules such as non-water soluble bioactive natural products, gluten, starch, and DNA. In most cases the solubility of the biomolecules evaluated in this study was greatly higher than water. Based on the results the novel NADES may be expected as potential green solvents at room temperature in diverse fields of chemistry.  相似文献   
112.
Boron-doped diamond (BDD) films are excellent electrode materials, whose electrochemical activity for some analytes can be tuned by controlling their surface termination, most commonly either to predominantly hydrogen or oxygen. This tuning can be accomplished by e.g. suitable cathodic or anodic electrochemical pretreatments. Recently, it has been shown that amorphous carbon nitride (a-CNx) films may present electrochemical characteristics similar to those of BDD, including the influence of surface termination on their electrochemical activity toward some analytes. In this work, we report for the first time a complete electroanalytical method using an a-CNx electrode. Thus, an a-CNx film deposited on a stainless steel foil by DC magnetron sputtering is proposed as an alternative electrode for the simultaneous determination of dopamine (DA) and ascorbic acid (AA) in synthetic biological samples by square-wave voltammetry. The obtained results are compared with those attained using a BDD electrode. For both electrodes, a same anodic pretreatment in 0.1 mol L−1 KOH was necessary to attain an adequate and equivalent separation of the DA and AA oxidation potential peaks of about 330 mV. The detection limits obtained for the simultaneous determination of these analytes using the a-CNx electrode were 0.0656 μmol L−1 for DA and 1.05 μmol L−1 for AA, whereas with the BDD electrode these values were 0.283 μmol L−1 and 0.968 μmol L−1, respectively. Furthermore, the results obtained in the analysis of the analytes in synthetic biological samples were satisfactory, attesting the potential application of the a-CNx electrode in electroanalysis.  相似文献   
113.
The construction and evaluation of a Low Temperature Co-fired Ceramics (LTCC)-based continuous flow potentiometric microanalyzer prototype to simultaneously monitor the presence of two ions (potassium and nitrate) in samples from the water recycling process for future manned space missions is presented. The microsystem integrates microfluidics and the detection system in a single substrate and it is smaller than a credit card. The detection system is based on two ion-selective electrodes (ISEs), which are built using all-solid state nitrate and potassium polymeric membranes, and a screen-printed Ag/AgCl reference electrode. The obtained analytical features after the optimization of the microfluidic design and hydrodynamics are a linear range from 10 to 1000 mg L−1 and from 1.9 to 155 mg L−1 and a detection limit of 9.56 mg L−1 and 0.81 mg L−1 for nitrate and potassium ions respectively.  相似文献   
114.
The characteristic behaviour of four groups of commonly used organophosphorus pesticides such as phosphates, phosphorothionates, phosphorothiolates and phosphorodithioates has been investigated by field desorption mass spectrometry. Their spectra show molecular ions of high abundance and characteristic fragmentation patterns. The phosphates and phosphorothionates usually show the α-cleavage with respect to the P-atom with and without proton transfer. In contrast, the phosphorothiolates and phosphorodithioates usually show the β-cleavage from the P-atom. The fragments with the charge retention on the phosphorus moiety were also observed in the field desorption mass spectra, although their abundances were often relatively low.

The analyses of standard mixtures as well as some waste water samples indicate that field desorption mass spectrometry is suitable for the identification of organophosphorus pesticides at nanogram level in mixtures and environmental samples without preliminary separation and purification.  相似文献   
115.
3D打印技术制备生物医用高分子材料的研究进展   总被引:1,自引:0,他引:1  
3D打印技术能够根据不同患者需要,快速精确制备适合不同患者的个性化生物医用高分子材料,并能同时对材料的微观结构进行精确控制.因此,这种新兴的医用高分子材料制备技术在未来生物医学应用(尤其是组织工程应用)中具有独特的优势.近年来,对于3D打印技术制备生物医用高分子材料的研究开发受到了越来越多的关注.不同的生物相容高分子原料被应用于3D打印技术,而这些3D成型高分子材料被用于体外细胞培养,或动物模型的软组织或硬组织修复中.本文主要介绍了近年来3D打印技术在生物医用高分子材料制备中的研究进展,并对该领域的未来应用和挑战进行了展望.  相似文献   
116.
为实现对循环水水质的远程监测,设计并开发了一种基于嵌入式技术的热力站远程水质监测系统的监测终端。监测终端由水质传感器、GPRS模块、通信转换模块及嵌入式开发板组成。嵌入式开发板以ARM11系列的Tiny6410为硬件基础,并嵌入WinCE系统作为软件平台,同时加入SQLite数据库以实现将水质传感器采集到的氯离子、PH值、溶解氧等参数的本地存储、查询及图表显示。最后监测终端通过GPRS模块与数据中心建立无线连接,接收数据中心的配置命令,并将现场测得数据发送到远端数据中心。调试结果表明:远程监测终端实现了循环水水质远程监测的功能要求,对于实现水质自动化监测具有一定的理论意义和实用价值。  相似文献   
117.
CEC is a high performance electrodriving liquid phase separation technique. It does not need complex and sophisticated high pressure instrumentation for nanoflow driving. This is attractive for parallel multicolumn analysis. To this end, high throughput methods for column preparation are needed to support the use of multiple columns. In this study, we directly used CEC mobile phase solution as the packing solvent, and realized rapid preparation of capillary columns based on a single particle fritting technology. The method presented high preparation throughput compared with other reported methods based on various fritting technologies. The single particle fritting approach promoted column preparation throughput to 1 column/h, including all the fritting, packing and conditioning steps. The rapidly prepared columns showed consistently high efficiency of up to 150 000 plates per meter, and usefulness in reversed phase CEC of neutral, charged and biomolecules. With standard peptides as the sample, excellent long term reproducibility (better than 0.8%RSD, ten days, for retention times) was observed.  相似文献   
118.
The effect of oxidation pretreatment temperature(500 ~ 1 000 ℃) on the catalytic activity of Kovar applied on hydrocarbon CO2reforming was examined. Catalytic performance evaluation using tetradecane at 800 ℃ with 70 μmol/s CO2revealed 700 and 1 000 ℃ as the best pre-oxidation temperature in producing CO and H2,respectively. XRD and SEM-EDX analyses showed that a separate metal oxide layer composed of iron oxide(Fe2O3and F3O4),nickel,cobalt,and possibly their respective oxides started to form when oxidation was conducted at 700 ℃ or higher.The presence of iron enhanced the stability of nickel in the structure while the compact structure of Fe3O4resulted into the formation of a thick and rigid metal oxide layer on the surface of the Kovar tube. The strong physical bond between the metal oxide layer and Kovar tube provided the catalyst good mechanical strength and consequently good catalytic activity.  相似文献   
119.
In general, lignocellulosic biomass contains three major components, namely lignin, hemicellulose and cellulose which are the polymers of C5 and C6 sugars. Thus, there is potential to utilize of this biomass for bioethanol production. The hydrolysis of cellulose into glucose was difficult due to the more fibrous nature and thus inhibit enzyme penetration into the cellulose. In order to solve this problem, hydrothermal pretreatment can be used for breaking the bonds within the lignin structure and increase the accessibility of enzyme into the cellulose. In this study, the effect of chemical addition, sodium hydroxide (NaOH) and calcium oxide (CaO) in hydrothermal pretreatment at 180 °C and 30 minutes reaction time of palm oil empty fruit bunches (EFB) on the enzymatic hydrolysis efficiencies was investigated. The enzymatic hydrolysis of hydrothermally pretreated EFB give the highest concentration of glucose at 0.67 g/L while the hydrothermally pretreated of EFB in the presence of NaOH gives the lowest glucose concentration 0.45 g/L.  相似文献   
120.
黄剑芳 《化学教育》2022,43(3):105-115
针对物质结构教学的抽象性,开发了一套基于三维虚拟技术的物质结构教学软件,可对结构模型进行旋转、平移、缩放、切割、镜像、插入或删除原子(团)及启停预先设置的动画等操作,强大的交互功能不仅能对分子或晶体结构如构造异构、立体异构、晶体的堆积方式、晶胞的划分、配位数、晶体结构中的空隙及空间利用率等问题进行效果极佳的可视化教学,另一方面,通过对B12与C60分子空间构型转变的探究揭示数学构型的重要性,通过对六方晶胞占有原子个数的探究修正晶胞模型,通过对金属晶体的4种基本堆积方式成因的探究提出“半密置层”概念来完善紧密堆积规律等案例,展示出三维虚拟技术在微观结构探索发现方面的巨大潜力。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号