首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2526篇
  免费   257篇
  国内免费   63篇
化学   855篇
晶体学   1篇
力学   87篇
综合类   76篇
数学   908篇
物理学   919篇
  2024年   21篇
  2023年   135篇
  2022年   502篇
  2021年   414篇
  2020年   257篇
  2019年   182篇
  2018年   138篇
  2017年   127篇
  2016年   146篇
  2015年   92篇
  2014年   96篇
  2013年   178篇
  2012年   49篇
  2011年   57篇
  2010年   58篇
  2009年   54篇
  2008年   43篇
  2007年   54篇
  2006年   30篇
  2005年   26篇
  2004年   23篇
  2003年   16篇
  2002年   19篇
  2001年   7篇
  2000年   14篇
  1999年   10篇
  1998年   8篇
  1997年   14篇
  1996年   8篇
  1995年   14篇
  1994年   3篇
  1993年   1篇
  1992年   3篇
  1991年   4篇
  1990年   3篇
  1989年   4篇
  1988年   6篇
  1987年   3篇
  1986年   9篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1981年   1篇
  1979年   3篇
  1977年   2篇
  1971年   1篇
  1969年   1篇
  1959年   5篇
排序方式: 共有2846条查询结果,搜索用时 15 毫秒
11.
Partial discharge (PD) is the main feature that effectively reflects the internal insulation defects of gas-insulated switchgear (GIS). It is of great significance to diagnose the types of insulation faults by recognizing PD to ensure the normal operation of GIS. However, the traditional diagnosis method based on single feature information analysis has a low recognition accuracy of PD, and there are great differences in the diagnosis effect of various insulation defects. To make the most of the rich insulation state information contained in PD, we propose a novel multi-information ensemble learning for PD pattern recognition. First, the ultra-high frequency and ultrasonic data of PD under four typical defects of GIS are obtained through experiment. Then the deep residual convolution neural network is used to automatically extract discriminative features. Finally, multi-information ensemble learning is used to classify PD types at the decision level, which can complement the shortcomings of the independent recognition of the two types of feature information and has higher accuracy and reliability. Experiments show that the accuracy of the proposed method can reach 97.500%, which greatly improves the diagnosis accuracy of various insulation defects.  相似文献   
12.
Necroptosis has emerged as an exciting target in oncological, inflammatory, neurodegenerative, and autoimmune diseases, in addition to acute ischemic injuries. It is known to play a role in innate immune response, as well as in antiviral cellular response. Here we devised a concerted in silico and experimental framework to identify novel RIPK1 inhibitors, a key necroptosis factor. We propose the first in silico model for the prediction of new RIPK1 inhibitor scaffolds by combining docking and machine learning methodologies. Through the data analysis of patterns in docking results, we derived two rules, where rule #1 consisted of a four-residue signature filter, and rule #2 consisted of a six-residue similarity filter based on docking calculations. These were used in consensus with a machine learning QSAR model from data collated from ChEMBL, the literature, in patents, and from PubChem data. The models allowed for good prediction of actives of >90, 92, and 96.4% precision, respectively. As a proof-of-concept, we selected 50 compounds from the ChemBridge database, using a consensus of both molecular docking and machine learning methods, and tested them in a phenotypic necroptosis assay and a biochemical RIPK1 inhibition assay. A total of 7 of the 47 tested compounds demonstrated around 20–25% inhibition of RIPK1’s kinase activity but, more importantly, these compounds were discovered to occupy new areas of chemical space. Although no strong actives were found, they could be candidates for further optimization, particularly because they have new scaffolds. In conclusion, this screening method may prove valuable for future screening efforts as it allows for the exploration of new areas of the chemical space in a very fast and inexpensive manner, therefore providing efficient starting points amenable to further hit-optimization campaigns.  相似文献   
13.
固定邻域回归(ANR)算法采用K层奇异值分解(K-SVD)算法进行字典训练, 在字典学习过程中存在稀疏表示系数不准确的问题, 导致重建的结果不理想. 因此, 引入一种改进的K-SVD算法对字典进行训练, 该算法对字典训练改变了传统K-SVD算法更新稀疏表示系数的方式, 使得稀疏表示系数更加准确, 而且加快了字典的收敛速度, 使得训练得到的字典具有更好的稀疏表达能力. 同时, 针对ANR算法的不足, 提出一种面向有限带宽信道基于字典学习的图像超分辨率方法, 该方法采用改进的K-SVD算法训练字典对 , 并将其应用到ANR算法中, 实现图像的超分辨率重建. 实验结果表明, 本文提出的方法不仅能够保持ANR算法快速重建的优势, 而且提高了图像的重建质量, 具有更高的峰值信噪比和结构相似度.  相似文献   
14.
分析了自适应谐振(ART2)神经网络模型的模式分类能力,并利用该网络来进行图像纹理的分类和识别,对6类自然景物的纹理图片分类和识别的结果验证了方法的有效性,对心脏超声图片的分类也取得一些初步成果.  相似文献   
15.
近年来,机器学习等人工智能技术被应用于蛋白质工程,其在蛋白质结构、功能预测、催化活性等研究中具有独特优势。在未知蛋白质结构的情况下,将蛋白质序列和功能特性与机器学习相结合,基于序列-活性关系(innovative sequence-activity relationship,ISAR)算法,将蛋白质氨基酸序列数字化,用快速傅里叶变换(fast four transform,FFT)进行预处理,再进行偏最小二乘回归建模,可在数据集较少情况下拟合得到最佳模型。通过机器学习对紫色球杆菌视紫红质(gloeobacter violaceus rhodopsin,GR)的突变体蛋白质氨基酸序列与光谱最大吸收波长进行建模,获得了最佳模型。用最佳索引LEVM760106建模得到的确定系数R2 为0.944,均方误差E为11.64。用小波变换进行的预处理,其R2 虽也约为0.944,但E大于11.64,不及FFT进行的预处理。方法较好地解决了蛋白质序列与功能特性之间的数学建模问题,在蛋白质工程中可为预测更优的突变体提供支持。  相似文献   
16.
网络故障的及时诊断能够保证日常工作、学习和生活能够正常进行。传统的基于监督式学习的诊断方法依赖于大量具有鉴别意义的样本,这在实际情况中通常难以得到满足。针对上述问题,本文提出了一种基于直推式学习的诊断算法。针对大规模的网络管理的特征数据,本算法利用主成分分析对特征进行降维,并利用新的度量下的特征数据来构建拉普拉斯矩阵;该矩阵能够很好的描述带检测样本和训练样本之间的关系。在此基础上,本文设计了基于直推式学习的目标函数,并利用拉格朗日乘子法完成了优化。实验部分证明了本算法能够在有限数目的带标签的样本的前提下获得精确的分类结果,能够显著提高网络故障诊断的检测率。  相似文献   
17.
G Athithan 《Pramana》1995,45(6):569-582
This paper addresses itself to a practical problem encountered in using iterative learning rules for associative memory models. The performance of a learning rule based on linear programming which overcomes this problem is compared with that of a representative iterative rule by numerical simulation. Results indicate superior performance by the linear programming rule. An algorithm for computing radii of maximal hyperspheres around patterns in the state space of a model is presented. Fractional volumes of basins of attractions are computed for the representative iterative rule as well as the linear programming rule. With the radii of maximal hyperspheres as weight factors for corresponding patterns to be stored, the linear programming rule gives rise to the maximal utilisation of the state space.  相似文献   
18.
基于优化核极限学习机的风电功率时间序列预测   总被引:6,自引:0,他引:6       下载免费PDF全文
李军  李大超 《物理学报》2016,65(13):130501-130501
针对时间序列预测,在单隐层前馈神经网络的基础上,基于进化计算的优化策略,提出了一种优化的核极限学习机(optimized kernel extreme learning machine,O-KELM)方法.与极限学习机(extreme learning machine,ELM)方法相比,核极限学习机(kernel extreme learning machine,KELM)方法无须设定网络隐含层节点的数目,以核函数表示未知的隐含层非线性特征映射,通过正则化最小二乘算法计算网络的输出权值,它能以极快的学习速度获得良好的推广性.在KELM的基础上,分别将遗传算法、模拟退火、微分演化三种进化算法用于模型的结构输入选择、正则化系数以及核参数的优化选取,以进一步提高网络的性能.将O-KELM方法应用于标准Mackey-Glass混沌时间序列预测及某地区的风电功率时间序列预测实例中,在同等条件下,还与优化的极限学习机(optimized extreme learning machine,O-ELM)方法进行比较.实验结果表明,所提出的O-KELM方法在预测精度上优于O-ELM方法,表明了其有效性.  相似文献   
19.
Real-world networks are characterized by common features, including among others a scale-free degree distribution, a high clustering coefficient and a short typical distance between nodes. These properties are usually explained by the dynamics of edge and node addition and deletion.  相似文献   
20.
一种基于流形学习的近红外光谱分析建模方法   总被引:2,自引:0,他引:2  
近红外光谱分析的重要内容之一是基于校正样品集建立光谱和化学成分或类别之间的回归模型。流形学习是一类新的机器学习方法,它能够揭示出复杂数据的本质维数,提取最重要的特征信息,并用于建立回归或分类模型。文章以近红外光谱为研究对象,针对近红外光谱数据维数高、谱带归属难以确定等特点,基于流形学习中局部线性嵌入(LLE)算法的思想,提出了一种最小二乘局部加权回归(LS-LWR)建模方法。最后,利用各种浓度葡萄糖溶液的近红外光谱,对该方法进行了验证。同时建立主成份回归(PCR)和偏最小二乘回归(PLSR)模型,通过计算预测标准偏差(SEP)与LS-LWR模型进行比较。实验结果表明,LS-LWR模型有更好的预测效果,而且具有模型简单、稳定性好和计算省时等优点。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号