首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3119篇
  免费   489篇
  国内免费   496篇
化学   1984篇
晶体学   62篇
力学   944篇
综合类   21篇
数学   315篇
物理学   778篇
  2024年   26篇
  2023年   49篇
  2022年   122篇
  2021年   128篇
  2020年   193篇
  2019年   146篇
  2018年   151篇
  2017年   118篇
  2016年   182篇
  2015年   149篇
  2014年   164篇
  2013年   236篇
  2012年   171篇
  2011年   161篇
  2010年   151篇
  2009年   152篇
  2008年   148篇
  2007年   164篇
  2006年   187篇
  2005年   167篇
  2004年   147篇
  2003年   168篇
  2002年   116篇
  2001年   77篇
  2000年   88篇
  1999年   74篇
  1998年   58篇
  1997年   68篇
  1996年   56篇
  1995年   41篇
  1994年   44篇
  1993年   30篇
  1992年   28篇
  1991年   26篇
  1990年   20篇
  1989年   14篇
  1988年   17篇
  1987年   15篇
  1986年   14篇
  1985年   7篇
  1984年   8篇
  1983年   2篇
  1982年   12篇
  1981年   5篇
  1980年   1篇
  1978年   3篇
排序方式: 共有4104条查询结果,搜索用时 10 毫秒
71.
Porous CuO micro‐/nanostructures with clean surface, prepared through Cu2(OH)2CO3 precursor followed by calcination in air, were proven to be an effective peroxidase mimic. They can quickly catalyze oxidation of the peroxidase substrate 3,3′,5,5′‐tetramethylbenzidine (TMB) in the presence of H2O2, producing a blue color. The obtained porous CuO micro‐/nanostructure have potential application in wastewater treatment. The apparent steady‐state kinetic parameter was studied with TMB as the substrate. In addition, the potential application of the porous CuO in wastewater treatment was demonstrated with phenol‐containing water as an example. Such investigation not only confirms the intrinsic peroxidase‐like activity of micro‐/nanostructured CuO, but also suggests its potential application in wastewater treatment.  相似文献   
72.
Porous tantalum nitride (Ta3N5) single crystals, combining structural coherence and porous microstructure, would substantially improve the photoelectrochemical performance. The structural coherence would reduce the recombination of charge carriers and maintain excellent transport properties while the porous microstructure would not only reduce photon scattering but also facilitate surface reactions. Here, we grow bulk-porous Ta3N5 single crystals on a two-centimeter scale with (002), (023), and (041) facets, respectively, and show significantly enhanced photoelectrochemical performance. We show the preferential facet growth of porous crystals in a lattice reconstruction strategy in relation to lattice match and lattice channel. We present the facet engineering to enhance light absorption, exciton lifetime and transport properties. The porous Ta3N5 single crystal boosts photoelectrochemical oxidation of alcohols with the (002) facet showing the highest performance of >99 % alcohol conversion and >99 % aldehyde/ketone selectivity.  相似文献   
73.
The development of ultrastable carbon materials for potassium storage poses key limitations caused by the huge volume variation and sluggish kinetics. Nitrogen-enriched porous carbons have recently emerged as promising candidates for this application; however, rational control over nitrogen doping is needed to further suppress the long-term capacity fading. Here we propose a strategy based on pyrolysis–etching of a pyridine-coordinated polymer for deliberate manipulation of edge-nitrogen doping and specific spatial distribution in amorphous high-surface-area carbons; the obtained material shows an edge-nitrogen content of up to 9.34 at %, richer N distribution inside the material, and high surface area of 616 m2 g−1 under a cost-effective low-temperature carbonization. The optimized carbon delivers unprecedented K-storage stability over 6000 cycles with negligible capacity decay (252 mA h g−1 after 4 months at 1 A g−1), rarely reported for potassium storage.  相似文献   
74.
The development of noble-metal-free heterogeneous catalysts is promising for selective oxidation of aromatic alcohols; however, the relatively low conversion of non-noble metal catalysts under solvent-free atmospheric conditions hinders their industrial application. Now, a holey lamellar high entropy oxide (HEO) Co0.2Ni0.2Cu0.2Mg0.2Zn0.2O material with mesoporous structure is prepared by an anchoring and merging process. The HEO has ultra-high catalytic activity for the solvent-free aerobic oxidation of benzyl alcohol. Up to 98 % conversion can be achieved in only 2 h, to our knowledge, the highest conversion of benzyl alcohol by oxidation to date. By regulating the catalytic reaction parameters, benzoic acid or benzaldehyde can be selectively optimized as the main product. Analytical characterizations and calculations provide a deeper insight into the catalysis mechanism, revealing abundant oxygen vacancies and holey lamellar framework contribute to the ultra-high catalytic activity.  相似文献   
75.
陈香李  刘凯强  房喻 《化学进展》2020,32(7):861-872
作为一类典型软物质材料,近年来分子凝胶在生物医学、柔性电子设备、晶体控制生长、水体净化,以及3D打印材料、微纳米材料和高能量密度材料制备等领域表现出巨大的应用潜力,受到人们越来越多的关注。如何提高分子凝胶结构调控效率,拓展分子凝胶功能,促进分子凝胶实际应用已经成为新阶段分子凝胶研究的主要内容。本文结合本课题组的研究工作,从动态共价键调控分子凝胶力学性能、分子凝胶促进高品质有机晶体制备和高性能多孔高分子材料的分子凝胶(凝胶乳液)软膜板制备三个方面阐述分子凝胶的结构调控和功能化应用研究。在此基础上,简要展望分子凝胶研究的发展趋势。  相似文献   
76.
本文总结了Newman多孔电极理论的基本内容,提出若干改进思路. 提出基于离子-空穴耦合传输机制描述浓电解质中的离子输运过程,在此基础上引入离子-电子耦合转移反应的思想处理电极材料中的离子传输问题,并通过计算嵌锂材料的离子扩散系数验证其合理性. 总结了描述多孔电极多尺度结构的相关理论和技术,表明均质化方法和基于结构重建的介观模拟方法均能给出比较合理的有效输运参数,从而提高多孔电极理论模拟结果的准确性.  相似文献   
77.
Control of pore window size is the standard approach for tuning gas selectivity in porous solids. Here, we present the first example where this is translated into a molecular porous liquid formed from organic cage molecules. Reduction of the cage window size by chemical synthesis switches the selectivity from Xe‐selective to CH4‐selective, which is understood using 129Xe, 1H, and pulsed‐field gradient NMR spectroscopy.  相似文献   
78.
Hydrochromic materials that can reversibly change color upon water treatment have attracted much attention owing to their potential applications in diverse fields. Herein, for the first time, we report that space‐confined CsPbBr3 nanocrystals (NCs) are hydrochromic. When CsPbBr3 NCs are loaded into a porous matrix, reversible transition between luminescent CsPbBr3 and non‐luminescent CsPb2Br5 can be achieved upon the exposure/removal of water. The potential applications of hydrochromic CsPbBr3 NCs in anti‐counterfeiting are demonstrated by using CsPbBr3 NCs@mesoporous silica nanospheres (around 100 nm) as the starting material. Owing to the small particle size and negatively charged surface, the as‐prepared particles can be laser‐jet printed with high precision and high speed. We demonstrate the excellent stability over repeated transformation cycles without color fade. This new discovery may not only deepen the understanding of CsPbX3, but also open a new way to design CsPbX3 materials for new applications.  相似文献   
79.
Tremendous interest was recently devoted to the preparation of porous and functional materials through sustainable route, including primarily the use of renewable biopolymers instead of petroleum‐sourced synthetic chemicals. Among the biopolymers available in enormous quantity, chitosan – obtained by deacetylation of chitin – stands as the sole nitrogen‐containing cationic amino‐sugar carbohydrate. This distinctively provides chitosan derivatives with plenty of opportunities in materials science. Particularly, its pH switchable solubility allowed the preparation of three‐dimensional entangled nanofibrillated self‐standing microspheres. These porous hydrogels behave as nano‐reactors to confine exogenous nanoobjects within the polysaccharide network, including sol‐gel metal alkoxide species, organometallic derivatives and isotropic and oriented nanoparticles. Besides, the interfacial interplay of chitosan with lamellar clay and graphene oxide allowed the penetration of the biopolymer inside of the galleries, which result in a complete delamination of the layered nanomaterials. The preserved gelation memory of chitosan in these formulations provides a way to access porous microspheres entangling exfoliated nanometric sheets. CO2 supercritical drying of functional hydrogel beads enabled efficient removal of water and other liquid solvents without wall collapsing, allowing large‐scale preparation of millimetric hydrocolloidal microspheres with an open macroporous network. These functionalized lightweight biopolymer aerogels find applications in heterogeneous catalysis, sensing, adsorption, insulation and for the design of other sophisticated porous nanostructures. Beyond their tailorable molecular and textural‐engineering, the possibility for macroscopic shaping of these intriguing nanostructures opens many new opportunities, especially in additive‐manufacturing for soft and hybrid robotics.  相似文献   
80.
Glucocorticoids have a certain whitening effect on the skin. However, frequent and long‐term use of cosmetics including glucocorticoids is harmful to health. Herein, we proposed a novel micro‐solid phase extraction method for the detection of prednisolone acetate, prednisone, and prednisolone in cosmetics coupled with high‐performance liquid chromatography. In this method, porous monolithic polymer micro‐extraction bars were prepared by “one‐step, one‐pot” in situ photopolymerization combined with sacrificial support in hollow fiber under water atmosphere. The crucial factors such as pH of sample solution, extraction, and elution times that influence micro‐extraction were optimized and found to be 9.0, 2 h, and 32 min, respectively. Under the optimum experimental conditions, the linear range of the calibration curves were from 5.0 to 2000 µg/L with correlation coefficients (R2) between 0.9922 and 0.9996. The limit of detection and limit of quantification were 1.5 µg/L and 5.0 µg/L, respectively, and the recoveries were found to be in range of 69.0–113.3%. The analysis of precision for intraday and interday were less than 10.40 and 10.59%. The device has been successfully achieved photopolymerization under water atmosphere. The results indicated that this method is simple, accurate, and satisfactory for the pretreatment and determination of glucocorticoids in complex cosmetics samples.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号