首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1021篇
  免费   39篇
  国内免费   143篇
化学   971篇
晶体学   1篇
力学   21篇
综合类   1篇
数学   4篇
物理学   205篇
  2024年   1篇
  2023年   2篇
  2022年   7篇
  2021年   14篇
  2020年   26篇
  2019年   26篇
  2018年   23篇
  2017年   37篇
  2016年   31篇
  2015年   44篇
  2014年   58篇
  2013年   168篇
  2012年   31篇
  2011年   36篇
  2010年   33篇
  2009年   30篇
  2008年   47篇
  2007年   61篇
  2006年   51篇
  2005年   57篇
  2004年   51篇
  2003年   41篇
  2002年   35篇
  2001年   38篇
  2000年   31篇
  1999年   24篇
  1998年   26篇
  1997年   25篇
  1996年   31篇
  1995年   19篇
  1994年   18篇
  1993年   22篇
  1992年   19篇
  1991年   9篇
  1990年   7篇
  1989年   3篇
  1988年   6篇
  1987年   1篇
  1986年   2篇
  1985年   5篇
  1984年   1篇
  1982年   3篇
  1981年   2篇
  1978年   1篇
排序方式: 共有1203条查询结果,搜索用时 15 毫秒
61.
Isotactic polypropylene block copolymers, isotactic-polypropylene-block-poly (methyl methacrylate) (i-PP-b-PMMA) and isotactic-polypropylene-block-polystyrene (i-PP-b-PS), were prepared by atom transfer radical polymerization (ATRP) using a brominated styrene-terminated isotactic polypropylene macroinitiator synthesized from bromination of styrene-terminated isotactic polypropylene. The styrene-terminated isotactic polypropylene can be obtained by polymerization of propylene in the presence of styrene and hydrogen chain transfer agents using a rac-Me2Si[2-methyl-4-(1-naphyl)Ind]2ZrCl2 as catalyst. The molecular weights of isotactic polypropylene block copolymers were controlled by altering the amount of hydrogen used in the polymerization of propylene and the amount of monomer used in the blocking reaction. The effect of i-PP-b-PS block copolymer on PP-PS blends and that of i-PP-b-PMMA block copolymer on PP-PMMA blends were studied by scanning electron microscopy.  相似文献   
62.
The orientation and crystallinity evolution of isotactic polypropylene (iPP) induced by rolling were studied using wide angle X-ray scattering with an area detector. The tensile mechanical properties of rolled isotactic polypropylene sheets were also measured in this work. The texture component method was used to analyze the rolling texture. The rolling texture consists mainly of (010)[001], (130)[001] and [001]//RD fiber components in the sample with a rolling true strain of 1.5. The results reveal that crystallinity drastically decreases during rolling. It is suggested that amorphization is a deformation mechanism which takes place as an alternative to crystallographic intralamellar slip depending on the orientation of the lamellae. Both the orientation and crystallinity affect the tensile mechanical properties of rolled polypropylene. Crystallinity influences the elastic modulus on both directions and yield strength on transverse direction at the first stage of deformation. Orientation is the main reason for the changes of mechanical properties, especially at the latter part of deformation. The changes of both tensile strength and elongation percentage on rolling direction are larger than those on transverse direction, which results from the orientation. At last, the anisotropic mechanical properties occur on the rolling and transverse direction: high tensile strength with low elongation percentage on rolling direction and low tensile strength with high elongation percentage on transverse direction.  相似文献   
63.
A novel method that allows the determination of the electrical potential of a polymer surface has been applied for polypropylene film treated by N2 + H2 cold plasma. The plasma treatment results in formation on the film surface of NH2 groups, which then gets transformed to NH3+ in contact with an electrolyte and leads to the formation of an electrical double layer. The method consists of theoretical calculation of electrical model potential, using the measurement of the electrical capacitance of the film in contact with an electrolyte by dielectric spectroscopy. Comparison with the results obtained by theoretical model shows similar dependencies of the electrical potential as a function of amino‐groups density and electrolyte concentration, but systematic differences of absolute values are observed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
64.
In this study, the effects of crystallization conditions (cooling rate and end temperature of cooling) on crystallization behavior and polymorphic composition of isotactic polypropylene/multi‐walled carbon nanotubes (iPP/MWCNTs) composites nucleated with different concentrations of β‐nucleating agent (tradename TMB‐5) were investigated by differential scanning calorimetry (DSC), wide‐angle X‐ray diffraction (WAXD) and scanning electronic microscopy (SEM). The results of DSC, WAXD and SEM revealed that the addition of MWCNTs and TMB‐5 evidently elevates crystallization temperatures and significantly decreases the crystal sizes of iPP. Because of the competition between α‐nucleation (provided by MWCNTs) and β‐nucleation (induced by TMB‐5), the β‐phase crystallization takes place only when 0.15 wt% and higher concentration of TMB‐5 is added. Non‐isothermal crystallization kinetics study showed that the crystallization activation energy ΔE of β‐nucleated iPP/MWCNTs composites is obviously higher than that of pure iPP, which slightly increases with the increase of TMB‐5 concentration, accompanying with the transition of its polymorphic crystallization behavior. The results of non‐isothermal crystallization and melting behavior suggested that the cooling rate and end temperature of cooling (Tend) are important factors in determining the proportion and thermal stability of β‐phase: Lower cooling rate favors the formation of less amount of β‐phase with higher thermal stability, while higher cooling rate encourages the formation of higher proportion of β‐phase with lower thermal stability. The Tend = 100°C can eliminate the β–α recrystallization during the subsequent heating and therefore enhance the thermal stability of the β‐phase. By properly selecting TMB‐5 concentration, cooling rate and Tend, high β‐phase proportion of 88.9% of the sample was obtained. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
65.
甲基丙烯酸缩水甘油酯/苯乙烯固相接枝聚丙烯   总被引:6,自引:0,他引:6  
以苯乙烯(St)为共单体,过氧化苯甲酰(BPO)为引发剂,采用固相接枝反应将甲基丙烯酸缩水甘油酯(GMA)接枝到聚丙烯(PP)大分子链上。研究了反应时间、单体用量、引发剂用量等因素对接枝率的影响。采用凝胶渗透色谱(GPE)测定了PP和接枝物PP-g-(GMA-St)的分子量和分子量分布。结果 表明固相接枝PP反应条件为[GMA/[St]=2,反应3.5h,加入GMA 10份,BPO 5份。St的加入有助于GMA与PP的接枝,同时在一定程度上抑制了PP的降解。  相似文献   
66.
合成了Cp TiCl2 N[Si(CH3) 3]2 甲基铝氧烷 (MAO)催化体系 ,以该体系进行丙烯聚合得到无规聚丙烯 ,具有高的分子量及良好的弹性 ,玻璃化温度为 - 8 8℃ .产物经DSC、1 3C NMR、DMA等方法表征 .结果表明 ,催化活性随着丙烯压力的增加 ,有明显的增大 .催化活性在 4 0℃下有最高的催化活性 ,而产物分子量随着温度的下降有明显增大 ,在 0℃~ 5 0℃范围内分子量MW =(2 0~ 6 0 )× 10 4 .  相似文献   
67.
A modified nano-calcium carbonate (R-CCR) was prepared by coating a layer of unsaturated hydroxylfatty acid on the surface of CCR powders using a solid state method; the latter were commercial nano-CaCO3 modified with stearic acid. FTIR studies indicate that the modifier is combined on the surface of CaCO3. PP/EPDM/nano-CaCO3 ternary composites were prepared by a melt-mixing method. SEM and TEM were utilized to examine the morphology of the composites. The tensile fractured surface of PP/EPDM/R-CCR showed a fibroid morphology and large-scale yield deformation. The impact fractured surface showed that the amount of cavities in the PP/EPDM/R-CCR system was increased, however their size diminished obviously. R-CCR particles were dispersed uniformly in the PP matrix, and their compatibility was distinctly improved as compared to CCR when the amount of R-CCR was 15 h−1. The tensile strength remained nearly constant (reduced from 27.6 MPa to 27.5 MPa), while the impact strength increased from 9.6 kJ/m2 to 15.4 kJ/m2 as CCR was replaced by R-CCR. Meanwhile, the bending strength and bending modulus also increased correspondingly. Furthermore, the impact strength of PP/EPDM/R-CCR was maintained at a high level (15.4 kJ/m2), which was more than the sum of that of PP/EPDM and PP/R-CCR (6.6 kJ/m2 and 6.1 kJ/m2 respectively). This indicates that the R-CCR and EPDM have a significant synergistic toughening effect on PP while maintaining the strength and modulus of virgin PP. Both the storage modulus G′ and loss modulus G″ of PP/EPDM and PP/EPDM/R-CCR composites increase with increasing frequency, but the values of G′ and G″ of the tertiary composite are relatively higher than those of the binary system. The loss factor and viscosity decrease with increasing frequency, but there is little difference between tertiary and binary composites. The apparent viscosity η of the tertiary system containing R-CCR is lower than that of the tertiary system containing CCR and virgin PP. The viscosity of the composites sig-nificantly decreases with increasing shear rate. The mea-sured mechanical properties of the composites indicate that replacing CCR with R-CCR for binary composites could simultaneously enhance the toughness and strength of PP. __________ Translated from Acta Polymerica Sinica, 2008, 4 (in Chinese)  相似文献   
68.
Electrochemical techniques are applied to estimate the fractal dimension value of electroactive surface structures. However, the fractal dimension value is an abstract concept, which sometimes is hard to understand. Herein, this abstract concept is used to calculate the fractional content of the nickel/graphite–polypropylene hybrid composite material, putting into practice this concept in the study of composite materials.  相似文献   
69.
Polypropylene (PP) has become an indispensable material in our daily lives. Annual worldwide production of PP is now more than 30000000 tons and is predicted to grow at an annual rate of about 6% during the first decade of the 21st century. Commercial production of PP began in 1957 with the use of TiCl(3) catalysts established by Ziegler and Natta. However, the low activities and low stereospecificities of the catalysts resulted in large amounts of catalyst residue and atactic PP in the product, necessitating steps for their removal in commercial production. As a means of finding appropriate catalysts, we developed MgCl(2)-supported TiCl(4) catalysts, which basic concept was introduction of organic compounds onto the inorganic crystal catalyst surface. This addition led to remarkable enhancements in stereospecificity with extremely high activity. Use of the new catalysts enlarged and simplified the PP production process by eliminating the steps previously required for removal of catalyst residue and atactic PP. In addition, it greatly improved the properties of the PP, enabling a much wider range of PP applications by replacing metal and engineering plastics with the highly stereoregular PP. Therefore, these catalysts helped the rapid establishment of the current PP industry and now play a major role in production. The latest MgCl(2)-supported TiCl(4) catalyst is providing precise control of the isotactic PP structure. Future expectations for this type of catalyst are to acquire a single-site nature and to contribute to the creation of a new class of hybrid materials.  相似文献   
70.
A polyolefin with certified biocompatibility according to USP class VI was used by our group as feedstock for filament-based 3D printing to meet the highest medical standards in order to print personal protective equipment for our university hospital during the ongoing pandemic. Besides the chemical resistance and durability, as well as the ability to withstand steam sterilization, this polypropylene (PP) copolymer is characterized by its high purity, as achieved by highly efficient and selective catalytic polymerization. As the PP copolymer is suited to be printed with all common printers in fused filament fabrication (FFF), it offers an eco-friendly cost–benefit ratio, even for large-scale production. In addition, a digital workflow was established focusing on common desktop FFF printers in the medical sector. It comprises the simulation-based optimization of personalized print objects, considering the inherent material properties such as warping tendency, through to validation of the process chain by 3D scanning, sterilization, and biocompatibility analysis of the printed part. This combination of digital data processing and 3D printing with a sustainable and medically certified material showed great promise in establishing decentralized additive manufacturing in everyday hospital life to meet peaks in demand, supply bottlenecks, and enhanced personalized patient treatment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号