首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   90篇
  免费   3篇
  国内免费   7篇
化学   71篇
晶体学   11篇
力学   2篇
物理学   16篇
  2023年   1篇
  2022年   6篇
  2021年   7篇
  2020年   7篇
  2019年   6篇
  2018年   8篇
  2017年   5篇
  2016年   6篇
  2015年   3篇
  2014年   3篇
  2013年   6篇
  2012年   6篇
  2011年   2篇
  2009年   4篇
  2008年   3篇
  2007年   4篇
  2006年   3篇
  2005年   3篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  2000年   4篇
  1999年   2篇
  1995年   1篇
  1994年   3篇
  1993年   1篇
  1991年   1篇
排序方式: 共有100条查询结果,搜索用时 15 毫秒
11.
The dipharmacophore compound 3‐cyclopropyl‐5‐(3‐methyl‐[1,2,4]triazolo[4,3‐a]pyridin‐7‐yl)‐1,2,4‐oxadiazole, C12H11N5O, was studied on the assumption of its potential biological activity. Two polymorphic forms differ in both their molecular and crystal structures. The monoclinic polymorphic form was crystallized from more volatile solvents and contains a conformer with a higher relative energy. The basic molecule forms an abundance of interactions with relatively close energies. The orthorhombic polymorph was crystallized very slowly from isoamyl alcohol and contains a conformer with a much lower energy. The basic molecule forms two strong interactions and a large number of weak interactions. Stacking interactions of the `head‐to‐head' type in the monoclinic structure and of the `head‐to‐tail' type in the orthorhombic structure proved to be the strongest and form stacked columns in the two polymorphs. The main structural motif of the monoclinic structure is a double column where two stacked columns interact through weak C—H…N hydrogen bonds and dispersive interactions. In the orthorhombic structure, a single stacked column is the main structural motif. Periodic calculations confirmed that the orthorhombic structure obtained by slow evaporation has a lower lattice energy (0.97 kcal mol?1) compared to the monoclinic structure.  相似文献   
12.
Ab initio molecular orbital calculations (Hartree–Fock, HF and density functional theories, DFTs) have been carried out for SiO2 polymorphs coesite, low cristobalite, and -quartz, in order to investigate the reliability of this method for predicting 29Si and 17O nuclear magnetic resonance (NMR) properties of silicates. Oxygen- and silicon-centered clusters consisting of one (1T) to three tetrahedral (3T) shells (one to four atomic shells), taken from real crystal structure, have been investigated. It is found that for reasonable predication of both the 29Si and 17O chemical shifts (δiSi and δiO), the minimum cluster is one that gives the correct second neighbors to the nucleus of interest. Both the δiSi and δiO have reached convergence with respect to cluster size at the OH-terminated two tetrahedral (2T) shell (three atomic shells around Si and four atomic shells around O) model. At convergence, the calculated δiSi values agree well (within ±1 ppm) with experimental data. The calculated 17O electric field gradient (EFG)-related parameters also agree with experimental data within experimental uncertainties. The calculation also reproduces small differences in δiO for O sites with similar tetrahedral connectivities, but shows deviations up to about 10 ppm in relative difference for O sites with different tetrahedral connectivities. The poor performance for the latter is mainly due to the approximations of the HF method. Our study thus suggests that the ab initio calculation method is a reliable mean for predicting 29Si and 17O NMR parameters for silicates. Such an approach should find application not only to well-ordered crystalline phases, but also to disordered materials, by combining with other techniques, such as the molecular dynamics simulation method.  相似文献   
13.
A new boron nitride polymorph, P213 BN (space group: P213), is investigated by first-principles calculations, including its structural properties, stability, elastic properties, anisotropy and electronic properties. It is found that the new boron nitride polymorph P213 BN is mechanically, dynamically and thermodynamically stable. The bulk modulus (B), shear modulus (G) and Young's modulus of P213 BN are 91 GPa, 41 GPa and 107 GPa, respectively, all of which are larger than that of Y carbon and TY carbon. By comparing with c-BN, the Young's modulus, shear modulus and Poisson's ratio of P213 BN show tiny anisotropy in the (001), (010), (100) and (111) planes. At the same time, in contrast with most boron nitride polymorphs, P213 BN is a semiconductor material with a smaller band gap of 1.826 eV. The Debye temperature and the anisotropic sound velocities of P213 BN are also investigated in this work.  相似文献   
14.
Tuning fluorescence colour of solid-state materials has become a topic of increasing interest for both fundamental mechanism study and practical applications such as sensors, optical recording and security printing. In this work, a fluorescent colour tuneable molecule BA-C16 is rationally designed and facilely synthesized by attaching flexible long alkyl chains to 2-hydroxybenzophenone azine ( BA ), which shows both aggregation-induced emission (AIE) and excited-state intramolecular proton transfer (ESIPT) characteristics. Compared to BA , the simple introduction of long alkyl chains in BA-C16 leads to an emission wavelength redshift from 542 to 558 nm. This strategy of extending emission wavelength is rarely reported, and is ascribed to the enlarged through-space π-conjugation between interplanar molecules in the aggregate of BA-C16 . Three crystals of BA-C16 are obtained with green, yellowish green and yellow emission. According to characterization by X-ray crystallography, X-ray powder diffraction and differential scanning calorimetry, alkyl chains play an important role in inducing different stacking modes of the three crystals, which further leads to polymorph-dependent fluorescence colour. BA-C16 exhibits tuneable solid-state fluorescence upon vapor fumigation, or annealing based on a transition between a “near-monomer” crystalline state and a “dimer” crystalline state. BA-C16 is further applied for rewritable fluorescence printing tuned by vapor- and thermal-treatment.  相似文献   
15.
合成形态、大小及结构可人为调控的无机材料是现代材料科学的重要研究方向[1]. 借助于各类有机添加剂及模板剂的调控作用, 可利用溶液合成方法制备出形貌与结构受到有效调控的无机粒子[2,3]. 室温固态化学反应已被成功地应用于多种无机纳米粒子[4]及纳米线[5]的合成, 并显示出高效、节能、无污染和操作简便等优点, 因而在材料合成领域具有应用前景[6].  相似文献   
16.
A new polymorph of Bi2(SO4)3 was prepared by reaction of LiBiO2 with H2SO4 and its crystal structure was solved from X-ray powder diffraction. This new polymorph crystallizes in C2/c space group with lattice parameters a = 17.3383(3) Å, b = 6.77803(12) Å, c = 8.30978(13) Å, β = 101.4300(12)°. Bi2(SO4)3 presents a layered structure made of SO4 sulfate groups and signs of stereochemically active Bi3+ lone pairs. The new Bi2(SO4)3 absorbs water to form Bi2(H2O)2(SO4)2(OH)2 through an intermediate Bi2O(OH)2SO4 phase, and the transition is reversible when heated under vacuum.  相似文献   
17.
Two polymorphs of monovalent [Ni(dmit)2] (dmit2−=2-thioxo-1,3-dithiole-4,5-dithiolate) crystals A and B, (anilinium)(18-crown-6)[Ni(dmit)2], were prepared, and the structure and magnetic properties were investigated. In these crystals, the [Ni(dmit)2] molecules form dimers, which arranged into chains between the supramolecular cation structure (anilinium)(18-crown-6). In crystal A, supramolecular cation formed a regular stack, inducing ladder structure of [Ni(dmit)2], whose magnetism had been well fitted by spin ladder equation with the spin gap of Δ=190 K. Crystal B is ca. 3% more densely packed compared to crystal A. Due to the dense packing, supramolecular cation stack is distorted, which prevented the intermolecular interaction between [Ni(dmit)2] dimers in direction corresponds to the ladder-leg direction in crystal A. Reflecting the [Ni(dmit)2] arrangement, crystal B showed a temperature dependence of magnetic susceptibility well reproduced by the singlet-triplet thermal activation model, whose antiferromagnetic exchange interaction (2J) was 140 K.  相似文献   
18.
Characterization of the solid-state form (hydrate or polymorph) of a pharmaceutical active is a key scientific and regulatory requirement during development of and prior to seeking approval for marketing of the drug product. A variety of analytical methods are available to perform this task. By nature of the fundamental information it provides, TG-DTA offers advantages over other methods in regards to monitoring and quantitation of hydration state changes. In a single experiment with only a few milligrams of sample, TG-DTA perceives minor changes in phase, quantitates total water content and percent conversion, and illustrates hydrate type. All of this is accomplished without the necessity of generating time-consuming standard curves representing the differing ratios of hydrated to anhydrous forms. This study describes the use of TG-DTA to monitor and quantitate humidity induced solid–solid phase conversion of nitrofurantoin and risedronate. Percent conversion was qualitatively observed by both TG and DTA signals and quantitated by the TG.  相似文献   
19.
The structures of gossypol complexes are extremely sensitive to the halogenomethane present as the guest; e.g. changing the number of Cl atoms in chloromethane derivatives changes the structure of the gossypol complex. The crystals of C30H30O8·CH2Cl2 are monoclinic, space groupC2/c,a=21.320(4),b=19.199(6),c=15.765(2)Å, =113.05(2)o,V=5916(2)Å3,Z=8,D x=1.35 g/cm3,T=295 K. The structure has been solved by direct methods and refined to the finalR value of 0.084 for 1828 reflections. In the structure H-bonded gossypol molecules form columns, generating channels in the structure which are filled by guest molecules. After decomposition (desolvation) monocrystals of the complexes are conserved without destruction, in which there are rather wide and empty channels though slightly smaller than in the complex. An attempt is made to explain some peculiarities of the behavior of the gossypol polymorph formed on the basis of its structure with empty channels. Supplementary data relevant to this article have been deposited with the British Library Publication No. SUP 82165 (17 pages).  相似文献   
20.
We have investigated the polymorphic phase transformations above ambient temperature for 3‐chloro‐trans‐cinnamic acid (3‐ClCA, C9H7ClO2) and a solid solution of 3‐ClCA and 3‐bromo‐trans‐cinnamic acid (3‐BrCA, C9H7BrO2). At 413 K, the γ polymorph of 3‐ClCA transforms to the β polymorph. Interestingly, the structure of the β polymorph of 3‐ClCA obtained in this transformation is different from the structure of the β polymorph of 3‐BrCA obtained in the corresponding polymorphic transformation from the γ polymorph of 3‐BrCA, even though the γ polymorphs of 3‐ClCA and 3‐BrCA are isostructural. We also report a high‐temperature phase transformation from a γ‐type structure to a β‐type structure for a solid solution of 3‐ClCA and 3‐BrCA (with a molar ratio close to 1:1). The γ polymorph of the solid solution is isostructural with the γ polymorphs of pure 3‐ClCA and pure 3‐BrCA, while the β‐type structure produced in the phase transformation is structurally similar to the β polymorph of pure 3‐BrCA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号