首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2058篇
  免费   80篇
  国内免费   348篇
化学   2285篇
晶体学   18篇
力学   36篇
综合类   16篇
数学   16篇
物理学   115篇
  2024年   4篇
  2023年   18篇
  2022年   40篇
  2021年   53篇
  2020年   57篇
  2019年   59篇
  2018年   54篇
  2017年   67篇
  2016年   63篇
  2015年   61篇
  2014年   108篇
  2013年   203篇
  2012年   94篇
  2011年   98篇
  2010年   67篇
  2009年   84篇
  2008年   138篇
  2007年   106篇
  2006年   99篇
  2005年   115篇
  2004年   137篇
  2003年   92篇
  2002年   77篇
  2001年   51篇
  2000年   47篇
  1999年   54篇
  1998年   47篇
  1997年   43篇
  1996年   40篇
  1995年   36篇
  1994年   40篇
  1993年   50篇
  1992年   42篇
  1991年   26篇
  1990年   20篇
  1989年   24篇
  1988年   28篇
  1987年   10篇
  1986年   6篇
  1985年   7篇
  1984年   3篇
  1983年   3篇
  1982年   5篇
  1981年   5篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1975年   1篇
排序方式: 共有2486条查询结果,搜索用时 10 毫秒
101.
A high‐performance liquid chromatographic (HPLC) method for enantioseparation of bupropion was developed using two isothiocyanate‐based chiral derivatizing reagents, (S)‐1‐(1‐naphthyl) ethyl isothiocyanate, (S)‐NEIT, and (R)‐α‐methyl benzyl isothiocyanate, (R)‐MBIT. The diastereomers synthesized with (S)‐NEIT were enantioseparated by reversed‐phase HPLC using gradient elution with mobile phase containing water and acetonitrile, whereas diastereomers synthesized with (R)‐MBIT were enantioseparated using triethyl amine phosphate buffer and methanol. Derivatization conditions were optimized and the method was validated for accuracy, precision and limit of detection. The limit of detection was found to be 0.040–0.043 µg/mL for each of the diastereomers prepared with (S)‐NEIT. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
102.
As alternative hydrophobic adsorbent for DNA adsorption, supermacroporous cryogel disks were synthesized via free radical polymerization. In this study, we have prepared two kinds of cryogel disks: (i) poly(2‐hydroxyethyl methacrylate‐N‐methacryloyl‐l ‐tryptophan) [p(HEMA‐MATrp)] cryogel containing specific hydrophobic ligand MATrp; and (ii) monosize p(HEMA‐MATrp) particles synthesized via suspension polymerization embedded into p(HEMA) cryogel structure to obtain p(HEMA‐MATrp)/p(HEMA) composite cryogel disks. These cryogel disks containing hydrophobic functional group were characterized via swelling studies, Fourier transform infrared spectroscopy, elemental analysis, surface area measurements and scanning electron microscopy. DNA adsorption onto both p(HEMA‐MATrp) cryogel and p(HEMA‐MATrp)/p(HEMA) composite cryogels was investigated. Maximum adsorption of DNA on p(HEMA‐MATrp) cryogel was found to be 15 mg/g polymer. Otherwise, p(HEMA‐MATrp)/p(HEMA) composite cryogels significantly increased the DNA adsorption capacity to 38 mg/g polymer. Composite cryogels could be used repeatedly without significant loss on adsorption capacity after 10 repetitive adsorption–desorption cycles. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
103.
Two‐way multicomponent diffusion processes in polymeric nanocomposite foams, where the condensed phase is nanoscopically reinforced with impermeable fillers, are investigated. The diffusion process involves simultaneous outward permeation of the components of the dispersed gas phase and inward diffusion of atmospheric air. The transient variation in thermal conductivity of foam is used as the macroscopic property to track the compositional variations of the dispersed gases due to the diffusion process. In the continuum approach adopted, the unsteady‐state diffusion process is combined with tortuosity theory. The simulations conducted at ambient temperature reveal distinct regimes of diffusion processes in the nanocomposite foams owing to the reduction in the gas‐transport rate induced by nanofillers. Simulations at a higher temperature are also conducted and the predictions are compared with experimentally determined thermal conductivities under accelerated diffusion conditions for polyurethane foams reinforced with clay nanoplatelets of varying individual lamellar dimensions. Intermittent measurements of foam thermal conductivity are performed while the accelerated diffusion proceeded. The predictions under accelerated diffusion conditions show good agreement with experimentally measured thermal conductivities for nanocomposite foams reinforced with low and medium aspect‐ratios fillers. The model shows higher deviations for foams with fillers that have a high aspect ratio.  相似文献   
104.
杨春海 《应用化学》2003,20(6):597-0
漆酚铝树脂;漆酚铝高分子修饰碳糊电极用于溶出伏安法测定痕量银  相似文献   
105.
韩广旬  温宏艳 《有机化学》1992,12(5):449-463
本文综述了近年来不对称Diels-Alder反应中手性催化剂研究的进展,对各类手性催化剂的性能和特点作了简要介绍.  相似文献   
106.
A new polymerization strategy, consisting of nucleophilic substitution reaction between CS32‐, immobilized on a polymeric support, and dimethyl α,α′‐dibromoalkylanedioate in solution, leads to the formation of polytrithiocarbonates. When n = 0, 1 in CH3OOCCHBr(CH2)nCHBrCOOCH3 (α,α′‐dibromoalkylanedioate), only five‐ or six‐membered cyclic trithiocarbonates were obtained; n ≥ 2 resulted in the formation of polytrithiocarbonates.  相似文献   
107.
Polymeric Iodoplumbates – Synthesis and Crystal Structures of (Pr3N–C2H4–NPr3)[Pb6I14(dmf)2] · 4 DMF, (Pr3N–C2H4–NPr3)[Pb(dmf)6][Pb5I14] · DMF, and (Me3N–C2H4–NMe3)2[Pb2I7]I (Pr3N–C2H4–NPr3)[Pb6I14(dmf)2] · 4 DMF ( 1 ) and (Pr3N–C2H4–NPr3)[Pb(dmf)6][Pb5I14] · DMF ( 2 ) have almost the same composition, but completely different structures. Both compounds are formed selectively depending on the reaction and crystallization conditions. In 2 the PbII atoms are coordinated either by six bridging I ligands in the two-dimensional [Pb5I14]4– network or by six DMF ligands in the [Pb(dmf)6]2+ cations. In contrast, (Me3N–C2H4–NMe3)2[Pb2I7]I ( 3 ) contains non-coordinating I anions between the iodoplumbate layers. The iodoplumbate anions in 2 and 3 consist of face and corner sharing PbI6 octahedra, whereas in 1 PbI6 and PbI5(dmf) octahedra share common edges to form a one-dimensional polymeric section of the PbI2 structure. (Pr3N–C2H4–NPr3)[Pb6I14(dmf)2] · 4 DMF ( 1 ): Space group P1, a = 920.1(3), b = 1597.2(5), c = 1613.9(4) pm, α = 66.02(2), β = 84.53(2), γ = 85.99(2)°, V = 2156(1) · 106 pm3; (Pr3N–C2H4–NPr3)[Pb(dmf)6][Pb5I14]·DMF ( 2 ): Space group P21, a = 1201.21(9), b = 3031.1(2), c = 1294.96(9) pm, β = 108.935(7)°, V = 4459.8(5) · 106 pm3; (Me3N–C2H4–NMe3)2[Pb2I7]I ( 3 ): Space group Pnma, a = 2349.9(2), b = 1623.83(9), c = 980.75(7) pm, V = 3742.4(5) · 106 pm3.  相似文献   
108.
The feasibility of chemical bond formation, especially in the chain-transfer reaction between polymer and β-cyclodextrin (β-CD) molecules in the products of the radiation polymerization of β-CD with vinylidene chloride (VDC) its adducts has been considered. The lack of these bonds in the polymerization products of similar β-CD adducts with methyl methacrylate (MM), styrene (St), a mixture of VDC and allyl chloride (AC) and a mixture of VDC and MM (10:90 molar ratio) has been established. On the basis of the results obtained the lack of chemical bonds in the polymerization product of β-CD· VDC adduct is suggested.  相似文献   
109.
Summary. A new and simple method for the synthesis of 1,3,2-diazaphosphorines and 1,3,2-oxazaphosphorine was developed based on the reactions of Lawessons reagent with -aminopropionitriles and -hydroxypropionitrile. In addition, a rapid and facile synthesis of 1,3,2-diazaphospholidin-4-ones by the reaction of P(NEt2)3 with hindered diamino substrates under microwave irradiation was also achieved. The prepared phosphorines show herbicidal activity to some extent in the preliminary bioassays.  相似文献   
110.
1 INTRODUCTION Recently, the organic-inorganic hybrid Ⅳa groupmetal halides with low-dimensional structure haveattracted much attention of chemists and physicistsdue to their particular properties and applications.For example, they are akin to “natural quantum-well”architectures and have tunable excitonic propertiesusually governed by the inorganic substructure andorganic component[1]; they have been applied assome technologically important materials, such assemiconductor materials in …  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号