首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10382篇
  免费   1715篇
  国内免费   966篇
化学   10477篇
晶体学   85篇
力学   123篇
综合类   31篇
数学   25篇
物理学   2322篇
  2024年   26篇
  2023年   173篇
  2022年   473篇
  2021年   530篇
  2020年   704篇
  2019年   556篇
  2018年   499篇
  2017年   573篇
  2016年   776篇
  2015年   755篇
  2014年   841篇
  2013年   995篇
  2012年   865篇
  2011年   848篇
  2010年   667篇
  2009年   656篇
  2008年   589篇
  2007年   532篇
  2006年   407篇
  2005年   344篇
  2004年   252篇
  2003年   211篇
  2002年   172篇
  2001年   147篇
  2000年   95篇
  1999年   84篇
  1998年   54篇
  1997年   38篇
  1996年   31篇
  1995年   24篇
  1994年   23篇
  1993年   30篇
  1992年   24篇
  1991年   13篇
  1990年   13篇
  1989年   8篇
  1988年   7篇
  1987年   6篇
  1986年   3篇
  1985年   7篇
  1984年   3篇
  1983年   3篇
  1982年   2篇
  1981年   2篇
  1979年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
961.
Characterizing interfacial reactions is a crucial part of understanding the behavior of nanoparticles in nature and for unlocking their functional potential. Here, an advanced nanostructure characterization approach to study the corrosion processes of silver nanoparticles (Ag‐Nps), currently the most highly produced nanoparticle for nanotechnology, is presented. Corrosion of Ag‐Nps under aqueous conditions, in particular in the presence of organic matter and halide species common to many natural environments, is of particular importance because the release of toxic Ag+ from oxidation/dissolution of Ag‐Nps may strongly impact ecosystems. In this context, Ag‐Nps capped with polyvinolpyrrolidone (PVP) in contact with a simple proxy of organic matter in natural waters [polyacrylic acid (PAA) and Cl? in solution] has been investigated. A combination of synchrotron‐based X‐ray standing‐wave fluorescence yield‐ and X‐ray diffraction‐based experiments on a sample consisting of an approximately single‐particle layer of Ag‐Nps deposited on a silicon substrate and coated by a thin film of PAA containing Cl revealed the formation of a stable AgCl corrosion product despite the presence of potential surface stabilizers (PVP and PAA). Diffusion and precipitation processes at the Ag‐Nps–PAA interface were characterized with a high spatial resolution using this new approach.  相似文献   
962.
Cupric oxide nanoparticles of ∼8-10 nm width and 40-45 nm length self assembled as large particles ∼1-1.5 μm have been investigated, in the 10-325 K temperature range, using magnetic and dielectric measurements. In magnetic measurements a single broad peak at ∼230 K in a zero field cooled sample has been observed. Coercivity, in magnetization measurements at 10 K, suggests that the nanoparticles are core-shell type particles with an antiferromagnetic core and a ferromagnetic shell. Dielectric measurements, at various frequencies from 3.7 Hz to 949 kHz, exhibit a sharp peak at 284 K followed by weak anomalies around 213 and 230 K.  相似文献   
963.
The effect of surface morphology on the response of an ethanol sensor based on vanadium nanotubes surface loaded with Fe2O3 nanoparticles (Fe2O3/VONTs) was investigated in this work. The particle size of Fe2O3 loaded on VONTs was varied by using novel citric acid-assisted hydrothermal method. In the synthesis progress, citric acid was used as a surfactant and chelate agent, which ensured the growth of a uniform Fe2O3 loading on the nanotubes surface. The ethanol sensing properties was then measured for these Fe2O3/VONTs at 230-300 °C. The results showed that the sensor response increased with the particles size and the loading amount of Fe2O3. It appears that the load of Fe2O3 on the VONTs surface increases the concentration of oxygen vacancies and decreases the concentration of free electrons. The effects of morphology on the sensor resistance were interpreted in terms of the Debye length and the difference in the number of active sites.  相似文献   
964.
Polystyrene/silica nanoparticles were prepared by radical polymerization of silica nanoparticles possessing vinyl groups and styrene with benzoyl peroxide. The resulting vinyl silica nanoparticles, polystyrene/silica nanoparticles were characterized by means of Fourier transformation infrared spectroscopy, scanning electron microscopy and UV-vis absorption spectroscopy. The results indicated that polystyrene had been successfully grafted onto vinyl silica nanoparticles via covalent bond. The morphological structure of polystyrene/silica nanoparticles film, investigated by scanning electron microscopy, showed a characteristic rough structure. Surface wetting properties of the polystyrene/silica nanoparticles film were evaluated by measuring water contact angle and the sliding angle using a contact angle goniometer, which were measured to be 159° and 2°, respectively. The excellent superhydrophobic property enlarges potential applications of the superhydrophobic surfaces.  相似文献   
965.
Two silver salts, silver tetrafluoroborate and silver trifluoromethanesulfonate were dissolved in two different room temperature ionic liquids (RTILs), 1-Butyl-3 methyl imidazolium tetrafluoroborate ([Bmim][BF4]) and 1-Butyl-1 methyl pyrrolidinium trifluoromethanesulfonate ([Bmpy][Tfms]). Triton x-100 (TX-100) surfactant and cyclohexane as nonpolar medium are used to dissolve these RTILs to create reverse micellar system. Pure reverse micellar system is characterized by dynamic light scattering (DLS) measurement. These pure RTIL reverse micellar systems are used to prepare stable silver nanoparticle solution without using any other auxiliary solvent in the whole process.  相似文献   
966.
Nanoscopic impedance measurements were carried out on silver ion conducting glasses by coupling an impedance spectrometer with an atomic force microscope. When ac voltages were applied to a conducting AFM tip being in contact with the glass surface, silver nanoparticles were formed during the cathodic half cycle, which were not completely reoxidized in the anodic half cycle. We describe two protocols allowing for a controlled particle growth. The electrochemical oxidation/reduction processes led to low tip/sample interfacial impedances, and the formed silver particles acted as nanoelectrodes sensing the spreading resistance of the glass below the particles. We made a quantitative check of the spreading resistance formula under the assumption that spreading of the electric field is governed by the lateral diameter of the particles and found good agreement between the mean value of the local conductivities obtained at different tip positions and the macroscopic conductivity.  相似文献   
967.
We report on a direct measurement of adhesion between abrasive nanoparticles of irregular shape, which are used in semiconductor industry in the process of Chemical-Mechanical Planarization (CMP), and silica surface. The adhesion of ceria and silica nanoparticles to silica surface is measured in multiple chemistries of different CMP slurries using a specially developed atomic force microscopy (AFM) method. Using this method, we study the influence of adhesion on the main parameters of CMP, removal rate and defectivity, scratches. While being plausible to expect correlation between these parameters and adhesion, it has not been systematically studied as of yet. We observed direct correlation between adhesion and removal rate. Comparing the measured defectivity and adhesion, we observe the presence of some correlation between these parameters. We conclude that both adhesion and shape of abrasive particles influence defectivity, micro-scratches. Direct measurements of the adhesion between abrasive nano-particles and surface can be used in the screening of new slurries as well as various modeling related to wearing of the surfaces.  相似文献   
968.
Glass layers for planar light waveguides prepared by Ag-Na ion exchange of different silicate glasses in molten salt baths are annealed and/or irradiated with a laser beam in the UV region, with different energy density values and total pulse numbers. The samples are mainly characterized by optical absorption spectroscopy, luminescence spectroscopy, and Rutherford backscattering spectrometry, in order to determine the role of irradiation parameters and of the host matrix structure in the aggregation phenomena. Photoluminescence spectroscopy gave information regarding the presence of Ag multimeric aggregates, the primal seeds for the growing (nano)crystals. The appearance of the plasmon resonance band in the optical absorption spectra proved the formation of Ag clusters and allowed the evolution steps of the clusterization process to be followed as a function of the energy deposited during the laser irradiation.  相似文献   
969.
Gold nanoparticles were prepared by two different methods. The first method was chemically grafting the particles with different lengths of alkylthiol (C6SH, C12SH and C18SH). For the second method, the Au particles were surface modified first by mercaptosuccinic acid (MSA) to render a surface with carboxylic acid groups which play a role to physically adsorb cationic surfactant in chloroform. This method was termed physical/chemical method. In the first method, the effects of alkyl chain length and dispersion solvent on the monolayer behavior of surface modified gold nanoparticles was evaluated. The gold nanoparticles prepared by 1-hexanthiol demonstrated the narrowest size distribution. Most of them showed narrower particle size distributions in chloroform than in hexane. For the physical/chemical method, the particles can spread more uniformly on the water surface which is attributed to the amphiphilic character of the particles at the air/water interface. However, the particles cannot pack closely due to the relatively weak particle-particle interaction. The effect of alkyl chain length was also assessed for the second method.  相似文献   
970.
In this work, the use of patterned proteins and peptides for the deposition of gold nanoparticles on several substrates with different surface chemistries is presented. The patterned biomolecule on the surface acts as a catalyst to precipitate gold nanoparticles from a precursor solution of HAuCl4 onto the substrate. The peptide patterning on the surfaces was accomplished by physical adsorption or covalent attachment. It was shown that by using covalent attachment with a linker molecule, the influence of the surface properties from the different substrates on the biomolecule adsorption and subsequent nanoparticle deposition could be avoided. By adjusting the reaction conditions such as pH or HAuCl4 concentration, the sizes and morphologies of deposited gold nanoparticle agglomerates could be controlled. Two biomolecules were used for this experiment, 3XFLAG peptide and bovine serum albumin (BSA). A micro-transfer molding technique was used to pattern the peptides on the substrates, in which a pre-patterned poly(dimethylsiloxane) (PDMS) mold was used to deposit a lift-off pattern of polypropylmethacrylate (PPMA) on the various substrates. The proteins were either physically adsorbed or covalently attached to the substrates, and an aqueous HAuCl4 solution was applied on the substrates with the protein micropatterns, causing the precipitation of gold nanoparticles onto the patterns. SEM, AFM, and Electron Beam Induced Current (EBIC) were used for characterization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号