首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   183篇
  免费   14篇
  国内免费   21篇
化学   202篇
晶体学   1篇
力学   1篇
综合类   1篇
物理学   13篇
  2024年   1篇
  2023年   2篇
  2022年   3篇
  2021年   10篇
  2020年   6篇
  2019年   6篇
  2018年   10篇
  2017年   8篇
  2016年   12篇
  2015年   5篇
  2014年   10篇
  2013年   16篇
  2012年   10篇
  2011年   9篇
  2010年   9篇
  2009年   9篇
  2008年   11篇
  2007年   15篇
  2006年   10篇
  2005年   11篇
  2004年   7篇
  2003年   6篇
  2002年   9篇
  2001年   6篇
  2000年   3篇
  1999年   5篇
  1998年   2篇
  1997年   3篇
  1996年   1篇
  1994年   2篇
  1993年   1篇
排序方式: 共有218条查询结果,搜索用时 15 毫秒
211.
Bioplastics are one of the answers to environmental pollution and linear material flows. The most promising bioplastic polylactide (PLA) is already replacing conventional plastics in a number of applications. The properties of PLA, however, do not fit for all potential application areas, but they can be altered by the introduction of comonomers. The copolymerization of lactide (LA) with other lactones like ϵ-caprolactone (CL) has been established for several years. Nevertheless, controlling copolymerizations remains a challenge due to the high complexity of the system. Copolymerization of LA with other monomer classes is much less investigated, but has the chance to overcome the limitations in material properties that occur when only lactones are used. The crucial factor for all copolymerizations is the catalyst. It dominates the reaction kinetics and determines the resulting microstructure. In this review, copolymerization catalysts for LA are presented divided into catalysts for the synthesis of lactone block copolymers, lactone random copolymers, and multimechanistically synthesized copolymers. The selected catalysts are highlighted either owing to their industrially applicable polymerization conditions or their non-standard mechanism.  相似文献   
212.
A series of poly(l-lactide)-based poly(ester-urethane)s (PEUs) were synthesized by ring-opening polymerization of l-lactide using a variety of diols such as diethylene glycol (DEG), triethylene glycol (TEG), tetraethylene glycol (TetraEG), 1,5-pentanediol (PD), 1,8-octanediol (OD), isopropyl tartrate (TRAiPr) and benzyl tartrate (TRABn) in the presence of Sn(Oct)2, followed by chain extension with hexamethylene diisocyanate (HMDI). The thermal, mechanical, and degradation properties of the resulting PEUs were studied. The crystallinities of the PEUs decreased with increasing diol contents and were also dependent on the kind of the diol unit. The degradabilities of the PEUs with proteinase K were effectively controlled by the kind of diol unit depending on their size and hydrophilicity. The biodegradation of the PEUs in compost also showed strong dependence on the diol units in the PEUs in spite of relatively low diol content (∼3%).  相似文献   
213.
The adsorption of proteinase K on PLLA and PDLA films was studied by CA, surface tension, and microscopic measurements. ESEM clearly shows that proteinase K can irreversibly adsorb on PLLA film. In contrast, no enzyme adsorption was detected on PDLA film under the same conditions. The CA of PLLA film rapidly decreases after immersion in Tris buffer containing proteinase K, whereas that of PDLA remains unchanged. These findings indicate that enzyme adsorption may be a prerequisite for enzymatic degradation of polylactide substrates. Surface tension measurements allow calculation of the average area occupied per proteinase K molecule. The results show that the enzyme molecules exhibit a more compact conformation at higher temperature.  相似文献   
214.
A series of polylactide/poly(ethylene glycol) (PLA/PEG) block copolymers were synthesized by ring‐opening polymerization of L ‐ or D ‐lactide in the presence of mono‐ or di‐hydroxyl PEG. The effects of stereocomplexation on the physicochemical behavior of PLA/PEG copolymers in aqueous solution were investigated by varying the degree of stereocomplexation or PLLA/PEG to PDLA/PEG ratio. In mixture solutions of insoluble and soluble copolymers, stereocomplexation strongly affects the solubility of the copolymers. In mixture solutions of soluble copolymers, both the size and aggregation number (Nagg) of the aggregates vary as a function of the degree of stereocomplexation. It is suggested that the size variation of the aggregates with increasing the degree of stereocomplexation is dependent on Nagg changes which are determined by two effects: the self‐adjusting of the aggregates so as to minimize the free energy and thus to increase the Nagg, and the kinetics of aggregation which tend to form more aggregates and thus to decrease the Nagg. Combination of the two opposite effects well explains the diverse variations of Nagg and size of the aggregates as a function of the degree of stereocomplexation. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   
215.
The ring-opening polymerization (ROP) of L- lactide was carried out in bulk using various initiators along with triphenylphosphine (PPh3) as co-initiator. Equimolar addition of triphenylphosphine increased the molecular masses of polylactide (PLA). The polymerization was carried out at 403.15 K up to 155 hr. Different experiments were carried out over a wide range of monomer to initiator (Mo/Io) ratios. It was found that maximum molecular weight of polylactide was observed when Mo/Io ratio was 2500–2700. Polymerization reactions were carried out under two different environments in the reaction vessel, an inert cover and a partial vacuum. The average molecular weight of polylactide was determined by using size exclusion chromatography. The increase of polymerization time increased the weight average molecular weight but after prolonged reaction time, the molecular weight decreased gradually.  相似文献   
216.
Stereo multiblock PLAs with different block lengths are synthesized by melt polycondensation of low‐molecular‐weight poly(L ‐lactic acid)/poly(D ‐lactic acid) blends with a wide variety of $\overline {M} _{{\rm w}} $ in the range of 1.1–5.2 × 103 g · mol–1. The average block length (νav) of the stereo multiblock PLAs increases with increasing $\overline {M} _{{\rm w}} $ of the blend and with the reaction temperature, whereas $\overline {M} _{{\rm w}} $ and PDI of the stereo multiblock PLAs increases with increasing $\overline {M} _{{\rm w}} $ of the blend, the reaction time, and the temperature. Stereo multiblock PLAs with νav > 7 are crystallizable to form stereocomplex crystallites, and the crystallinity and melting temperature of the stereo multiblock PLAs increases with increasing νav and $\overline {M} _{{\rm w}} $ of the stereo multiblock PLAs.

  相似文献   

217.
The tetrameric titanium alkoxide (MeC(CH2μ3‐O)(CH2μ‐O)2)2Ti4(O‐i‐Pr)10 ( 1 ) catalyzes the ring‐opening polymerization (ROP) of lactide (LA) in toluene solution at various polymerization temperatures, and its bulk ROP at 130°C. Compound 1 facilitated reasonably controlled polymerization characteristics via a coordination/insertion mechanism in solution, whereas the bulk polymerization products displayed broad molecular‐weight distributions. The stereochemical microstructure of PLA was determined from homonuclear decoupled 1H NMR spectroscopic studies.  相似文献   
218.
The academic and industrial aspects of the preparation, characterization, mechanical and materials properties, crystallization behavior, melt rheology, and foam processing of pure polylactide (PLA) and PLA/layered silicate nanocomposites are described in this feature article. Recently, these materials have attracted considerable interest in polymer science research. PLA is linear aliphatic thermoplastic polyester and is made from agricultural products. Hectorite and montmorillonite are among the most commonly used smectite‐type layered silicates for the preparation of nanocomposites. Smectites are a valuable mineral class for industrial applications because of their high cation exchange capacities, surface area, surface reactivity, adsorptive properties, and, in the case of hectorite, high viscosity, and transparency in solution. In their pristine form, they are hydrophilic in nature, and this property makes them very difficult to disperse into a polymer matrix. The most common way to overcome this difficulty is to replace interlayer cations with quaternized ammonium or phosphonium cations, preferably with long alkyl chains. In general, polymer/layered silicate nanocomposites are of three different types: (1) intercalated nanocomposites, in which insertion of polymer chains into the layered silicate structure occurs in a crystallographically regular fashion, regardless of polymer to layered silicate ratio, with a repeat distance of few nanometer; (2) flocculated nanocomposites, in which intercalated and stacked silicate layers are sometimes flocculated due to the hydroxylated edge–edge interactions between the silicate layers; (3) exfoliated nanocomposites, in which individual silicate layers are uniformly distributed in the polymer matrix by average distances that totally depend on the layered silicate loading. This new family of composite materials frequently exhibits remarkable improvements in its material properties when compared with those of virgin PLA. Improved properties can include a high storage modulus both in the solid and melt states, increased flexural properties, a decrease in gas permeability, increased heat distortion temperature, an increase in the rate of biodegradability of pure PLA, and so forth.

Illustration of the biodegradability of PLA and various nanocomposites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号