首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   517篇
  免费   41篇
  国内免费   97篇
化学   553篇
晶体学   10篇
力学   19篇
综合类   1篇
物理学   72篇
  2024年   1篇
  2023年   4篇
  2022年   8篇
  2021年   14篇
  2020年   23篇
  2019年   11篇
  2018年   19篇
  2017年   19篇
  2016年   19篇
  2015年   15篇
  2014年   18篇
  2013年   73篇
  2012年   19篇
  2011年   20篇
  2010年   23篇
  2009年   13篇
  2008年   20篇
  2007年   24篇
  2006年   23篇
  2005年   20篇
  2004年   28篇
  2003年   10篇
  2002年   8篇
  2001年   22篇
  2000年   31篇
  1999年   28篇
  1998年   24篇
  1997年   22篇
  1996年   15篇
  1995年   13篇
  1994年   24篇
  1993年   23篇
  1992年   17篇
  1991年   2篇
  1990年   1篇
  1983年   1篇
排序方式: 共有655条查询结果,搜索用时 156 毫秒
581.
A novel diamine, 4,4‐bis(p‐aminophenoxymethyl)‐1‐cyclohexene (CHEDA), was synthesized from 4,4‐bis(hydroxymethyl)‐1‐cyclohexene and p‐chloronitrobenzene by nucleophilic aromatic substitution and subsequent catalytic reduction of the intermediate dinitro compound. A series of aromatic polyimides were prepared from CHEDA and commercial dianhydrides with varying flexibility and electronic character in two‐step direct polycondensation reactions. High molecular weight polyimides with intrinsic viscosities between 0.57 and 10.2 dL/g were obtained. Most of these polyimides, excluding those from PMDA and BPDA, were soluble in polar aprotic solvents such as NMP and DMAc, and many were also soluble in CHCl3 and THF. DSC analysis revealed glass transitions in the range of 190 to 250°C. No significant weight losses occurred below 450°C in nitrogen and 350°C in air. Bromination and epoxidation of cyclohexene double bond in CHDEA–6FDA (3e) were investigated as examples of possible polymer modifications. Qualitative epoxidation and selective bromination of the double bond were demonstated. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1189–1197, 1999  相似文献   
582.
583.
The physical aging behavior of an isotropic amorphous polyimide possessing a glass transition temperature of approximately 239°C was investigated for aging temperatures ranging from 174 to 224°C. Enthalpy recovery was evaluated as a function of aging time following sub‐Tg annealing in order to assess enthalpy relaxation rates, and time‐aging time superposition was employed in order to quantify mechanical aging rates from creep compliance measurements. With the exception of aging rates obtained for aging temperatures close to Tg, the enthalpy relaxation rates exhibited a significant decline with decreasing aging temperature while the creep compliance aging rates remained relatively unchanged with respect to aging temperature. Evidence suggests distinctly different relaxation time responses for enthalpy relaxation and mechanical creep changes during aging. The frequency dependence of dynamic mechanical response was probed as a function of time during isothermal aging, and failure of time‐aging time superposition was evident from the resulting data. Compared to the creep compliance testing, the dynamic mechanical analysis probed the shorter time portion of the relaxation response which involved the additional contribution of a secondary relaxation, thus leading to failure of superposition. Room temperature stress‐strain behavior was also monitored after aging at 204°C, with the result that no discernible embrittlement due to physical aging was detected despite aging‐induced increases in yield stress and modulus. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1931–1946, 1999  相似文献   
584.
CO2-induced plasticization may significantly spoil the membrane performance in high-pressure CO2/CH4 separations. The polymer matrix swells upon sorption of CO2, which accelerates the permeation of CH4. The polymer membrane looses its selectivity. To make membranes attractive for, for example, natural gas upgrading, plasticization should be minimized. In this article we study a polymer membrane stabilization by a semiinterpenetrating polymer network (s-ipn) formation. For this purpose, the polyimide Matrimid 5218 is blended with the oligomer Thermid FA-700 and subsequently heat treated at 265°C. Homogeneous films are prepared with different Matrimid/Thermid ratios and different curing times. The stability of the modified membrane is tested with permeation experiments with pure CO2 as well as CO2/CH4 gas mixtures. The original membrane shows a minimum in its permeability vs. pressure curves, but the modified membranes do not indicating suppressed plasticization. Membrane performances for CO2/CH4 gas mixtures showed that the plasticizing effect indeed accelerates the permeation of methane. The modified membrane clearly shows suppression of the undesired methane acceleration. It was also found that just blending Matrimid and Thermid was not sufficient to suppress plasticization. The subsequent heat treatment that results in the s-ipn was necessary to obtain a stabilized permeability. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1547–1556, 1998  相似文献   
585.
Interfacial electrostatic phenomena in ultrathin polyimide films have been examined, and the space charge distribution and electronic density of states have been determined. The presence of excess negative charges at the film-metal interface of nanometer thickness has been revealed and the alignment of the surface Fermi level of polymer films and Fermi level of metals have been elucidated. Taking into account the interfacial space charge, a step structure observed in the I-V characteristic of metal-polyimide-rhodamine-polyimide-metal junction, very similar to Coulomb staircase, is well explained. Furthermore, the electrical breakdown mechanism of a nanometer-thick polyimide film is found quite different from that of micrometer-thick films, owing to the presence of this interfacial nanometric space charge. Finally, for a profound understanding of the behaviour of surface monolayer, the Maxwell displacement current measurement coupled with optical second harmonic generation measurement has been employed.  相似文献   
586.
A polymer blend consisting of polyimide (PI) and polyurethane (PU) was prepared by means of a novel approach. PU prepolymer was prepared by the reaction of polyester polyol and 2,4-tolylenediisocyanate (2,4-TDI) and then end-capped with phenol. Poly(amide acid) was prepared from pyromellitic dianhydride (PMDA) and oxydianiline (ODA). A series of oligo(amide acid)s were also prepared by controlling the molar ratio of PMDA and ODA. The PU prepolymer and poly(amide acid) or oligo(amide acid) solution were blended at room temperature in various weight ratios. The cast films were obtained from the blend solution and treated at various temperatures. With the increase of polyurethane component, the films changed from plastic to brittle and then to elastic. The poly(urethane–imide) elastomers showed excellent mechanical properties and moderate thermal stability. The elongation of films with elasticity was more than 300%. The elongation set after the breaking of films was small. From the dynamic mechanical analysis, all the samples showed a glass transition temperature (Tg) at ca. −15°C, corresponding to Tg of the urethane component, suggesting that phase separation occurred between the two polymer components, irrespective of polyimide content. TGA and DSC studies indicated that the thermal degradation of poly(urethane–imide) was in the temperature range 250–270°C. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 3745–3753, 1997  相似文献   
587.
Transmission electron microscopy was performed on a polymeric nanofoam material, derived from a triblock copolymer composed of a fluorinated polyimide center block, 3F/PMDA (derived from pyromelletic dianhydride (PMDA) and 1,1-bis(4-aminophenyl)-1-phenyl-2,2,2-trifluoroethane (3F)) and polypropylene oxide (PO) end blocks. The cast and imidized polymer exhibits a microphase-separated morphology consisting of PO microdomains within a polyimide matrix. The final nanofoam material is obtained by decomposing PO microdomains into low molecular weight products, which diffuse out of the polyimide matrix leaving nanometer length scale voids. Ruthenium tetroxide staining prior to microscopy was used to enhance the contrast between the 3F/PMDA matrix and the PO microdomains or voids, which permitted a more detailed view of the microstructure of both the foamed and unfoamed materials. From the power spectra of the micrographs, spatial correlation between the PO microdomains in the unfoamed material and between the voids in the foam were found. An interdomain separation distance of ca. 37 nm was observed. Analysis of the image yielded an average area of 411 nm2 for the PO domains. The analysis indicated that the PO domains were oblong, having average major and minor dimensions of 35 and 12.5 nm, respectively. An autocorrelation of the image showed that the domain center of masses were positioned 41 nm apart, in close agreement with the domain spacing (ca. 37 nm) found as described above. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 1067–1076, 1997  相似文献   
588.
Two types of polyimide membranes; one crosslinkable and the other noncrosslinkable using ultraviolet light irradiation (UV irradiation), were prepared and investigated concerning the effect of UV irradiation on their gas permeabilities and selectivities. Permeability and diffusion coefficients for O2, N2, H2, and CO2 were determined using the vacuum pressure and time lag method. Sorption properties for carbon dioxide were carried out to evaluate the changes in the free volume in the membranes due to the irradiation. In both membranes, permeability coefficients for all gases used in this study decreased and permselectivity, particularly for H2 over N2, increased with increasing UV irradiation time without a significant decrease in the flux of H2. The coefficients depended on the membrane thickness, suggesting asymmetrical changes in both membranes due to UV irradiation. It was suggested by an attenuated total reflection (ATR) FTIR method and analysis of the gas sorption properties of the membranes that the physical changes due to UV irradiation at the irradiated side in both membranes significantly affected their gas permeation properties compared with the chemical changes, especially the crosslinking in the crosslinkable type. © 1997 John Wiley & Sons, Inc. J. Polym Sci B: Polym Phys 35: 2259–2269, 1997  相似文献   
589.
Silica–poly(imide) hybrid materials have been developed which rely on interactions between the organic and inorganic phases to improve homogeneity. Using this method, transparent hybrids have been formed over all compositions studied. The hybrids show improved hardness and modulus with increasing silica content. Links between the two phases result in very finely divided microstructures. Hybrids such as these might be very important as barrier layers or scratch-resistant coatings. © 1997 John Wiley & Sons, Ltd.  相似文献   
590.
A new electrically conducting composite film from polypyrrole and 4,4′-(hexafluoroisopropylidene)-bis(phthalic anhydride)-based polyimide was prepared. Pyrrole and the dopant ion can easily penetrate through the polyimide substrate and electropolymerize on the platinum (Pt) electrode due to the swelling of the polyimide on the metal electrode. The electrochemical properties of polypyrrole-polyimide (PPy/PI) composite films have been investigated by using cyclic voltammetry. The PPy/PI composite film is suitable for use as the electroactive material owing to its stable and controllable electrochemical properties. The electrical conductivity of composites falls in the range 0.0035–15 S/cm. Scanning electron micrograph, FTIR, and thermal studies indicate that PPy and PI form a homogeneous material rather than a simple mixture. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 3009–3016, 1997  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号