首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   496篇
  免费   103篇
  国内免费   44篇
化学   595篇
晶体学   9篇
综合类   2篇
数学   1篇
物理学   36篇
  2024年   2篇
  2023年   3篇
  2022年   12篇
  2021年   10篇
  2020年   14篇
  2019年   24篇
  2018年   18篇
  2017年   15篇
  2016年   28篇
  2015年   29篇
  2014年   33篇
  2013年   50篇
  2012年   32篇
  2011年   26篇
  2010年   25篇
  2009年   27篇
  2008年   25篇
  2007年   30篇
  2006年   30篇
  2005年   26篇
  2004年   21篇
  2003年   28篇
  2002年   11篇
  2001年   9篇
  2000年   12篇
  1999年   3篇
  1998年   7篇
  1997年   8篇
  1996年   16篇
  1995年   18篇
  1994年   8篇
  1993年   12篇
  1992年   7篇
  1990年   2篇
  1989年   2篇
  1988年   4篇
  1987年   4篇
  1986年   4篇
  1985年   1篇
  1984年   1篇
  1981年   2篇
  1979年   1篇
  1974年   1篇
  1972年   2篇
排序方式: 共有643条查询结果,搜索用时 15 毫秒
41.
Thywill Gamadeku 《合成通讯》2013,43(18):2723-2735
9-Benzylpurines have been lithiated in the 8-position and subsequently brominated when trapped with BrCCl2CCl2Br. The 8-bromopurines were isolated in excellent yields when the benzyl group carried an alkoxy or alkyl group in the ortho or para position. Without these substituents, the conversion was generally less, and formation of 8,8′-purinyl dimers was observed. There was also evidence of debenzylation in some instances. Bromination of 7-benzylpurines employing the same set of reaction conditions has also been achieved.  相似文献   
42.
In this study, bis(diphenylphosphinemethyl)dimethyl silane ( L1 ) and its palladium(II) halide complex, L1 /PdCl2 ( C1 ), were synthesized and characterized. Single‐crystal X‐ray analysis of the complex revealed bidentate coordination at the Pd center. In combination with methylaluminoxane (MAO) as co‐catalyst, C1 exhibited excellent catalytic activity and selectivity for ethylene dimerization toward butene. The maximum catalytic activity obtained from the C1 /MAO system for ethylene dimerization to yield butenes was 7.33 × 105 g/(molPd · h). The selectivity toward butene remained stable and high (> 96%) over the various conditions.  相似文献   
43.
Reactions of chloroacetamides (5) with N,N‐dimethylformamide dimethyl acetal gave 1,4‐diaryl‐piperazine‐2,5‐diones 11ae in good yield, rather than 1,5‐diaryl‐3,7‐dimethoxy‐1H,5H‐[1,5]diazocine‐2,6‐diones (9ae).  相似文献   
44.
The synthesis of an anthracene‐bearing photoactive barbituric acid receptor and its subsequent grafting onto azide‐terminated alkanethiol/Au self‐assembled monolayers by using an CuI‐catalyzed azide–alkyne reaction is reported. Monolayer characterization using contact‐angle measurements, electrochemistry, and spectroscopic ellipsometry indicate that the monolayer conversion is fast and complete. Irradiation of the receptor leads to photodimerization of the anthracenes, which induces the open‐to‐closed gating of the receptor by blocking access to the binding site. The process is thermally reversible, and polarization‐modulated IR reflection–absorption spectroscopy indicates that photochemical closure and thermal opening of the surface‐bound receptors occur in 70 and 100 % conversion, respectively. Affinity of the open and closed surface‐bound receptor was characterized by using force spectroscopy with a barbituric‐acid‐modified atomic force microscope tip.  相似文献   
45.
The preparation of dinuclear rhodium clusters and their use as catalysts is challenging because these clusters are unstable, evolving readily into species with higher nuclearities. We now present a novel synthetic route to generate rhodium dimers on the surface of MgO by a stoichiometrically simple surface‐mediated reaction involving [Rh(C2H4)2] species and H2. X‐ray absorption and IR spectra were used to characterize the changes in the nuclearity of the essentially molecular surface species as they formed, including the ligands on the rhodium and the metal‐support interactions. The support plays a key role in stabilizing the dinuclear rhodium species, allowing the incorporation of small ligands (ethyl, hydride, and/or CO) and enabling a characterization of the catalytic performance of the supported species for the hydrogenation of ethylene as a function of the metal nuclearity and ligand environment. A change in the nuclearity from one to two Rh atoms leads to a 58‐fold increase in the catalytic activity for ethylene hydrogenation, a reaction involving unsaturated, but stable, dimeric rhodium species.  相似文献   
46.
The methylation of the uncoordinated nitrogen atom of the cyclometalated triruthenium cluster complexes [Ru3(μ‐H)(μ‐κ2N1,C6‐2‐Mepyr)(CO)10] ( 1 ; 2‐MepyrH=2‐methylpyrimidine) and [Ru3(μ‐H)(μ‐κ2N1,C6‐4‐Mepyr)(CO)10] ( 9 ; 4‐MepyrH=4‐methylpyrimidine) gives two similar cationic complexes, [Ru3(μ‐H)(μ‐κ2N1,C6‐2,3‐Me2pyr)(CO)10]+( 2 +) and [Ru3(μ‐H)(μ‐κ2N1,C6‐3,4‐Me2pyr)(CO)10]+ ( 9 +), respectively, whose heterocyclic ligands belong to a novel type of N‐heterocyclic carbenes (NHCs) that have the Ccarbene atom in 6‐position of a pyrimidine framework. The position of the C‐methyl group in the ligands of complexes 2 + (on C2) and 9 + (on C4) is of key importance for the outcome of their reactions with K[N(SiMe3)2], K‐selectride, and cobaltocene. Although these reagents react with 2 + to give [Ru3(μ‐H)(μ‐κ2N1,C6‐2‐CH2‐3‐Mepyr)(CO)10] ( 3 ; deprotonation of the C2‐Me group), [Ru3(μ‐H)(μ3‐κ3N1,C5,C6‐4‐H‐2,3‐Me2pyr)(CO)9] ( 4 ; hydride addition at C4), and [Ru6(μ‐H)26‐κ6N1,N1′,C5,C5′,C6,C6′‐4,4′‐bis(2,3‐Me2pyr)}(CO)18] ( 5 ; reductive dimerization at C4), respectively, similar reactions with 9 + have only allowed the isolation of [Ru3(μ‐H)(μ3‐κ2N1,C6‐2‐H‐3,4‐Me2pyr)(CO)9] ( 11 ; hydride addition at C2). Compounds 3 and 11 also contain novel six‐membered ring NHC ligands. Theoretical studies have established that the deprotonation of 2 + and 9 + (that have ligand‐based LUMOs) are charge‐controlled processes and that both the composition of the LUMOs of these cationic complexes and the steric protection of their ligand ring atoms govern the regioselectivity of their nucleophilic addition and reduction reactions.  相似文献   
47.
The reaction of [{(CO)5W}PRH2] (R=H, Ph) with H3Al ? NR3 (R=Et, Me) leads to the formation of four‐membered heterocyclic compounds [({(CO)5W}P(H)AlH ? NEt3)2] and [({(CO)5W}PhPAlH ? NMe3)2]. Upon dissolving the solid compounds, fast equilibria between the isomers are observed on the NMR timescale. Further insight into the stability and reactivity of the isomers was gained by applying theoretical methods. DFT calculations predict that hydrogen elimination in the case of [({(CO)5W}PhPAlH ? NMe3)2] may be reversible.  相似文献   
48.
The unique linear linkage of isobutene to generate highly valuable C8 precursors for plasticizers is feasible by using special nickel catalysts. (4‐Cyclooctene‐1‐yl)(1,1,1,5,5,5‐hexafluoro‐2,4‐acetylacetonato)nickel and aluminum‐alkyl‐activated nickel acetylacetonates produce isobutene dimers with high selectivities of up to 95 %. Moreover, selectivity for the head‐to‐head products (2,5‐dimethylhexenes) is remarkably high at up to 99 %. Additionally, novel C12 isobutene trimers are also formed with a very high selectivity of up to 99 % for the linear linkage. The trimer structure (2,5,8‐trimethylnonenes) reflects the stepwise characteristic of the reaction mechanism. Pathways of insertion and activation and the deactivation processes of the catalyst are discussed in detail.  相似文献   
49.
An efficient tandem route to obtain tetrasubstituted NH pyrroles in a one-pot manner has been developed, staring from simple nitriles, ethyl bromoacetates, and zinc. This reaction involves oxidative dimerization of the zinc bromide complex of β-enaminoesters using cerium ammonium nitrate (CAN) as an oxidant, affording 2,3,4,5-tetrasubstituted pyrroles in yields up to 91%.  相似文献   
50.
Chemically induced dimerization (CID) has proven to be a powerful tool for modulating protein interactions. However, the traditional dimerizer rapamycin has limitations in certain in vivo applications because of its slow reversibility and its affinity for endogenous proteins. Described herein is a bioorthogonal system for rapidly reversible CID. A novel dimerizer with synthetic ligand of FKBP′ (SLF′) linked to trimethoprim (TMP). The SLF′ moiety binds to the F36V mutant of FK506‐binding protein (FKBP) and the TMP moiety binds to E. coli dihydrofolate reductase (eDHFR). SLF′‐TMP‐induced heterodimerization of FKBP(F36V) and eDHFR with a dissociation constant of 0.12 μM . Addition of TMP alone was sufficient to rapidly disrupt this heterodimerization. Two examples are presented to demonstrate that this system is an invaluable tool, which can be widely used to rapidly and reversibly control protein function in vivo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号