首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34380篇
  免费   1829篇
  国内免费   4849篇
化学   34224篇
晶体学   572篇
力学   184篇
综合类   171篇
数学   1086篇
物理学   4821篇
  2024年   52篇
  2023年   262篇
  2022年   613篇
  2021年   583篇
  2020年   737篇
  2019年   1680篇
  2018年   855篇
  2017年   1721篇
  2016年   1206篇
  2015年   1046篇
  2014年   1313篇
  2013年   2983篇
  2012年   1948篇
  2011年   2055篇
  2010年   1565篇
  2009年   1852篇
  2008年   2061篇
  2007年   2149篇
  2006年   2033篇
  2005年   1905篇
  2004年   1878篇
  2003年   1517篇
  2002年   1299篇
  2001年   1066篇
  2000年   1080篇
  1999年   816篇
  1998年   766篇
  1997年   665篇
  1996年   589篇
  1995年   552篇
  1994年   437篇
  1993年   399篇
  1992年   373篇
  1991年   204篇
  1990年   130篇
  1989年   110篇
  1988年   89篇
  1987年   51篇
  1986年   50篇
  1985年   52篇
  1984年   48篇
  1983年   23篇
  1982年   46篇
  1981年   46篇
  1980年   23篇
  1979年   45篇
  1978年   19篇
  1977年   18篇
  1976年   15篇
  1973年   10篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
New biodegradable/biocompatible ABC block copolymers, poly(ethylene oxide)‐b‐poly(glycidol)‐b‐poly(L ,L ‐lactide) (PEO‐PGly‐PLLA), were synthesized. First, PEO‐b‐poly(1‐ethoxyethylglycidol)‐b‐PLLA was synthesized by a successive anionic ring‐opening copolymerization of ethylene oxide, 1‐ethoxyethylglycidyl ether, and L ,L ‐lactide initiated with potassium 2‐methoxyethanolate. In the second step, the 1‐ethoxyethyl blocking groups of 1‐ethoxyethylglycidyl ether were removed at weakly acidic conditions leaving other blocks intact. The resulting copolymers were composed of hydrophilic and hydrophobic segments joined by short polyglycidol blocks with one hydroxyl group in each monomeric unit. These hydroxyl groups may be used for further copolymer transformations. The PEO‐PGly‐PLLA copolymers with a molecular weight of PLLA blocks below 5000 were water‐soluble. Above the critical micellar concentration (ranging from 0.05 to1.0 g/L, depending on the composition of copolymer), copolymers formed macromolecular micelles with a hydrophobic PLLA core and hydrophilic PEO shell. The diameters of the micelles were about 25 nm. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3750–3760, 2003  相似文献   
2.
    
3-[4-(Azidocarbonyl)]phenylsydnone (2) obtained from 3-(4-hydrazinocarbonyl) phenylsydnone (1) on Curtius rearrangement with alcohols, water and amines afforded the corresponding carbamates (3a-h), 4,4′-(sydnone-3-yl) diphenyl urea (4) and 4-(heterocyclyl)phenyl ureas (5a-l). Compounds (5a-l) on one-pot ring conversion yielded the 1,3,4-oxadiazolin-2-one derivatives (6a-l), which on reaction with N2H4 gave the 4-amino-1,2,4-triazolin-3-ones (7a-l). All these compounds exhibited moderate antimicrobial activity against the few microbes tested. The carbamates have been found to be more toxic against fourth instar larvae ofAedes aegypti, in particular, then-butyl derivative (3e).  相似文献   
3.
The development of the poly(3‐hydroxybutyrate) (PHB) morphology in the presence of already existent poly(vinylidene fluoride) (PVDF) spherulites was studied by two‐stage solidification with two separate crystallization temperatures. PVDF formed irregular dendrites at lower temperatures and regular, banded spherulites at elevated temperatures. The transition temperature of the spherulitic morphology from dendrites to regular, banded spherulites increased with increasing PVDF content. A remarkable amount of PHB was included in the PVDF dendrites, whereas PHB was rejected into the remaining melt from the banded spherulites. When PVDF crystallized as banded spherulites, PHB could consequently crystallize only around them, if at all. In contrast, PHB crystallized with a common growth front, starting from a defined site in the interfibrillar regions of volume‐filling PVDF dendrites. It formed by itself dendritic spherulites that included a large number of PVDF spherulites. For blends with a PHB content of more than 80 wt %, for which the PVDF dendrites were not volume‐filling, PHB first formed regular spherulites. Their growth started from outside the PVDF dendrites but could later interpenetrate them, and this made their own morphology dendritic. These PHB spherulites melted stepwise because the lamellae inside the PVDF dendrites melted at a lower temperature than those from outside. This reflected the regularity of the two fractions of the lamellae because that of those inside the dendrites of PVDF was controlled by the intraspherulitic order of PVDF, whereas that from outside was only controlled by the temperature and the melt composition. The described morphologies developed without mutual nucleating efficiency of the components. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 873–882, 2003  相似文献   
4.
The ring‐opening metathesis polymerizations (ROMP), using RuCl2 (PCy3)2CHPh, of a series of peptide‐functionalized norbornene derivatives have been investigated. Incorporation of a PEG‐monomer was found to prevent premature precipitation of polymer strands during the course of polymerization reactions and yield water compatible polymers in high conversions. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3178–3190, 2007  相似文献   
5.
The degree of phase separation in several moisture‐cured poly(urethane urea)s (PUUs) was studied by FTIR spectroscopy, wide angle X‐ray diffraction (WAXD), and temperature‐modulated differential scanning calorimetry (TMDSC). This latter technique was shown to be particularly useful in analysing the degree of phase separation in PUU polymers. Both phase mixing and phase segregation coexisted in the PUUs and the degree of phase separation increased as the urea hard segment (HS) content in the PUU increased. The maximum solubility of urea HSs into the polyol soft segments (SSs) was achieved for 50 wt % urea HS content in diol‐based PUUs, whereas for triol‐based PUUs the highest solubility between HS and SS was reached for lower urea HS amount. Finally, the higher the urea HS content the higher the extent of phase separation in the PUU. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 3034–3045, 2007  相似文献   
6.
Rhythmic growth of ring‐banded spherulites in blends of liquid crystalline methoxy‐poly(aryl ether ketone) (M‐PAEK) and poly(aryl ether ether ketone) (PEEK) has been investigated by means of differential scanning calorimetry (DSC), polarized light microscopy (PLM), and scanning electron microscopy (SEM) techniques. The measurements reveal that the formation of the rhythmically grown ring‐banded spherulites in the M‐PAEK/PEEK blends is strongly dependent on the blend composition. In the M‐PAEK‐rich blends, upon cooling, an unusual ring‐banded spherulite is formed, which is ascribed to structural discontinuity caused by a rhythmic radial growth. For the 50:50 M‐PAEK/PEEK blend, ring‐banded spherulites and individual PEEK spherulites coexist in the system. In the blends with PEEK as the predominant component, M‐PAEK is rejected into the boundary of PEEK spherulites. The cooling rate and crystallization temperature have great effect on the phase behavior, especially the ring‐banded spherulite formation in the blends. In addition, the effects of M‐PAEK phase transition rate and phase separation rate on banded spherulite formation is discussed. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 3011–3024, 2007  相似文献   
7.
Blends of amorphous poly(DL‐lactide) (DL‐PLA) and crystalline poly(L‐lactide) (PLLA) with poly(methyl methacrylate) (PMMA) were prepared by both solution/precipitation and solution‐casting film methods. The miscibility, crystallization behavior, and component interaction of these blends were examined by differential scanning calorimetry. Only one glass‐transition temperature (Tg) was found in the DL‐PLA/PMMA solution/precipitation blends, indicating miscibility in this system. Two isolated Tg's appeared in the DL‐PLA/PMMA solution‐casting film blends, suggesting two segregated phases in the blend system, but evidence showed that two components were partially miscible. In the PLLA/PMMA blend, the crystallization of PLLA was greatly restricted by amorphous PMMA. Once the thermal history of the blend was destroyed, PLLA and PMMA were miscible. The Tg composition relationship for both DL‐PLA/PMMA and PLLA/PMMA miscible systems obeyed the Gordon–Taylor equation. Experiment results indicated that there is no more favorable trend of DL‐PLA to form miscible blends with PMMA than PLLA when PLLA is in the amorphous state. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 23–30, 2003  相似文献   
8.
To investigate the position and amount of the CF3 group affecting the coloration of polyimides (PIs), we prepared 2,2‐bis[4‐(4‐amino‐2‐trifluoromethylphenoxy)phenyl]hexafluoropropane ( 2 ) with four CF3 groups with 2‐chloro‐5‐nitrobenzotrifluoride and 2,2‐bis(4‐hydroxyphenol)hexafluoropropane. A series of soluble and light‐colored fluorinated PIs ( 5 ) were synthesized from 2 and various aromatic dianhydrides ( 3a – 3f ). 5a – 5f had inherent viscosities ranging from 0.80 to 1.19 dL/g and were soluble in amide polar solvents and even in less polar solvents. The glass‐transition temperatures of 5 were 221–265 °C, and the 10% weight‐loss temperatures were above 493 °C. Their films had cutoff wavelengths between 343 and 390 nm, b* values (a yellowness index) ranging from 5 to 41, dielectric constants of 2.68–3.01 (1 MHz), and moisture absorptions of 0.03–0.29 wt %. In a comparison of the PI series 6 – 8 based on 2,2‐bis[4‐(4‐aminophenoxy)phenyl]hexafluoropropane, 2,2‐bis[4‐(4‐amino‐2‐trifluoromethylphenoxy)phenyl]propane, and 2,2‐bis[4‐(4‐aminophenoxy)phenyl]propane, we found that the CF3 group close to the imide group was more effective in lowering the color; this means that CF3 of 5 , 7 , and 8f was more effective than that of 6c . The color intensity of the four PI series was lowered in the following order: 5 > 7 > 6 > 8 . The PI 5f , synthesized from diamine 2 and 4,4′‐hexafluoroisopropylidenediphthalic anhydride, had six CF3 groups in a repeated segment, so it exhibited the lightest color among the four series. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 922–938, 2003  相似文献   
9.
A series of new poly(butylene succinate) (PBS)/layered silicate nanocomposites were prepared successfully by simple melt extrusion of PBS and organically modified layered silicates (OMLS). Three different types of OMLS were used for the preparation of nanocomposites: two functionalized ammonium salts modified montmorillonite and a phosphonium salt modified saponite. The structure of the nanocomposites in the nanometer scale was characterized with wide-angle X-ray diffraction and transmission electron microscopic observations. With three different types of layered silicates modified with three different types of surfactants, the effect of OMLS in nanocomposites was investigated by focusing on four major aspects: structural analysis, materials properties, melt rheological behavior, and biodegradability. Interestingly, all these nanocomposites exhibited concurrent improvements of material properties when compared with pure PBS. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 3160–3172, 2003  相似文献   
10.
A soluble cyano‐substituted poly[(1,3‐phenylene vinylene)‐alt‐(1,4‐phenylene vinylene)] derivative ( 9 ) was synthesized and characterized. Comparison between 9 and its model compound ( 10 ) showed that the chromophore in 9 remained to be well defined as a result of a π‐conjugation interruption at adjacent m‐phenylene units. The attachment of a cyano substituent only at the β position of the vinylene allowed the maximum electronic impact of the cyano group on the optical properties of the poly(p‐phenylene vinylene) material. At a low temperature (?108 or ?198 °C), the vibronic structures of 9 and 10 were partially resolved. The absorption and emission spectra of a film of 9 were less temperature‐dependent than those of a film of 10 , indicating that the former had a lower tendency to aggregate. A light‐emitting diode (LED) based on 9 emitted yellow light (λmax ≈ 578 nm) with an external quantum efficiency of 0.03%. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3149–3158, 2003  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号